У=-3х²+5х-1. Для нахождения корней надо уравнение функции приравнять нулю: -3х²+5х-1 = 0. Квадратное уравнение, решаем относительно x: Ищем дискриминант:D=5^2-4*(-3)*(-1)=25-4*(-3)*(-1)=25-(-4*3)*(-1)=25-(-12)*(-1)=25-(-12*(-1))=25-(-(-12))=25-12=13; Дискриминант больше 0, уравнение имеет 2 корня:x₁=(√13-5)/(2*(-3))=(√13-5)/(-2*3)=(√13-5)/(-6)=-(√13-5)/6=-(√13/6-5/6)=-(√13/6-(5/6))=-√13/6+(5/6) ≈ 0.23241;x₂=(-√13-5)/(2*(-3))=(-√13-5)/(-2*3)=(-√13-5)/(-6)=-(-√13-5)/6=-(-√13/6-5/6)=-(-√13/6-(5/6))=√13/6+(5/6) ≈ 1.43426.
График и таблица координат точек для его построения приведены в приложении.
У нас равнобедренная трапеция. Обозначим её АВСД. АВ = СД = 13 см ВС = 8 см АД = 18 см Из верхних вершин В и С опустим перпендикуляры на нижнее основание. Точки пересечения обозначим К и Л Получим посередине прямоугольник КВСЛ , по бокам 2 равных треугольника АВК и СЛД АК = ЛД = (18 - 8) : 2 = 5 (см) По теореме Пифагора из треугольника СЛД определим СЛ СЛ^2 = СД^2 - ЛД^2 = 13^2 - 5^2= 169 - 25 = 144 CЛ = 12 (см) Площадь трапеции = 1/2 СЛ * АД Площадь трапеции = 1/2 * 12 * 18 = 108 (см2) ответ: 108 см2 - площадь трапеции
У нас равнобедренная трапеция. Обозначим её АВСД. АВ = СД = 13 см ВС = 8 см АД = 18 см Из верхних вершин В и С опустим перпендикуляры на нижнее основание. Точки пересечения обозначим К и Л Получим посередине прямоугольник КВСЛ , по бокам 2 равных треугольника АВК и СЛД АК = ЛД = (18 - 8) : 2 = 5 (см) По теореме Пифагора из треугольника СЛД определим СЛ СЛ^2 = СД^2 - ЛД^2 = 13^2 - 5^2= 169 - 25 = 144 CЛ = 12 (см) Площадь трапеции = 1/2 СЛ * АД Площадь трапеции = 1/2 * 12 * 18 = 108 (см2) ответ: 108 см2 - площадь трапеции
Для нахождения корней надо уравнение функции приравнять нулю:
-3х²+5х-1 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=5^2-4*(-3)*(-1)=25-4*(-3)*(-1)=25-(-4*3)*(-1)=25-(-12)*(-1)=25-(-12*(-1))=25-(-(-12))=25-12=13;
Дискриминант больше 0, уравнение имеет 2 корня:x₁=(√13-5)/(2*(-3))=(√13-5)/(-2*3)=(√13-5)/(-6)=-(√13-5)/6=-(√13/6-5/6)=-(√13/6-(5/6))=-√13/6+(5/6) ≈ 0.23241;x₂=(-√13-5)/(2*(-3))=(-√13-5)/(-2*3)=(-√13-5)/(-6)=-(-√13-5)/6=-(-√13/6-5/6)=-(-√13/6-(5/6))=√13/6+(5/6) ≈ 1.43426.
График и таблица координат точек для его построения приведены в приложении.