Вычисление производной объясните,как это решать y=(x^2-1)(x^4+2) ответ должен быть: y'=(x^4+2)2x+(x^2-1)(4x^3) болею,поэтому не была на объяснении этой темы а в понедельник контрольная : '
Тут рулят , кажется, если не забыл, формулы привидения. sin315°= sin(360°-45°)= -sin(45°) // тут стоит минус, так как наша функция находится в 4-ой четверти, синус это же игрек на системе координат, а игрек в 4-ой четверти отрицательный. 2 | 1
3 | 4 схематичная система координат )) тут я показал где находятся четверти.
cos315°= cos(360°-45°)= +cos45° // тут стоит плюс, так как косинус это икс и он в 4-ой четверти положительный.
tg(315°) = tg(360°-45°)= -tg(45°) // тут стоит минус, так как тангенс в 4-ой четверти отрицательный, тангенс это sin÷cos или y÷x, в нашем случаи будет так: tg(360°-45°)= -sin45°÷cos45°= -tg45°
ctg(315°) = ctg(360°-45°)= -ctg(45°) // тут все тоже самое, что и в tg , но только катангес это cos÷sin или x÷y => ctg(360°-45°)= cos45°÷(-sin45°)= -ctg45°
Область определения данной функции можно найти опираясь на правило"Делить на о нельзя" или числитель дробного выражения не может принимать значения ,равные 0,то есть решаем уравнение х²-64=0 и тогда корни данного уравнения ,числа х=-8 и х=8 исключаем из ответа,то есть ответ в данном случае "Все числа,кроме 8 и-8". Очень часто область определения связано ещё и с определением квадратного корня,то есть выражение под квадратным корнем должен быть неотрицательным.В старших классах свойства логарифма может быть:там выражение под логарифмом должно быть положительным.
y`=(x²-1)`*(x^4+2)+(x²-1)*(x^4+2)`=2x*(x^4+2)+4x³*(x²-1)