М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
luizalol
luizalol
26.06.2022 03:54 •  Алгебра

Имеет ли уравнения решения? если имеет, то примеры решениями : x2 = y2; xy = 0; x2 + y2 = 0; xy = 12; x = y2; |x|+|y|+1=0

👇
Ответ:
Tigeriza
Tigeriza
26.06.2022
Вот все решения. ..........................................
Имеет ли уравнения решения? если имеет, то примеры решениями : x2 = y2; xy = 0; x2 + y2 = 0; xy = 12
Имеет ли уравнения решения? если имеет, то примеры решениями : x2 = y2; xy = 0; x2 + y2 = 0; xy = 12
Имеет ли уравнения решения? если имеет, то примеры решениями : x2 = y2; xy = 0; x2 + y2 = 0; xy = 12
4,7(91 оценок)
Открыть все ответы
Ответ:
мозк2
мозк2
26.06.2022

С применением степени
(квадрат и куб) и дроби

(x^2 - 1)/(x^3 + 1)

Квадратный корень

sqrt(x)/(x + 1)

Кубический корень

cbrt(x)/(3*x + 2)

С применением синуса и косинуса

2*sin(x)*cos(x)

Арксинус

x*arcsin(x)

Арккосинус

x*arccos(x)

Применение логарифма

x*log(x, 10)

Натуральный логарифм

ln(x)/x

Экспонента

exp(x)*x

Тангенс

tg(x)*sin(x)

Котангенс

ctg(x)*cos(x)

Иррациональне дроби

(sqrt(x) - 1)/sqrt(x^2 - x - 1)

Арктангенс

x*arctg(x)

Арккотангенс

x*arсctg(x)

Гиберболические синус и косинус

2*sh(x)*ch(x)

Гиберболические тангенс и котангенс

ctgh(x)/tgh(x)

Гиберболические арксинус и арккосинус

x^2*arcsinh(x)*arccosh(x)

Гиберболические арктангенс и арккотангенс

x^2*arctgh(x)*arcctgh(x)
4,6(75 оценок)
Ответ:
Vlad584q
Vlad584q
26.06.2022
1) Область определения логарифма{ x > 0; x =/= 1{ x^2 + 2x - 3 = (x + 3)(x - 1) > 0Отсюда{ x > 0; x =/= 1{ x < -3 U x > 1В итоге: x > 1
Это значит, что логарифм по основанию х - возрастающий.Кроме того, если x^2 + 2x - 3 > 0. то x^2 + 2x - 2 тоже > 0
2) Теперь решаем само неравенство
По одному из свойств логарифмов
Причем новое основание с может быть каким угодно, например, 10.
Замена 
Поскольку x > 1, то lg (x) > 0, поэтому при умножении на знаменатель знак неравенства не меняется.
Единственное решение уравнения: y = 2, тогда y + 2 = 4, y^2 + 1 = 5.Решение неравенства: y >= 2

x ∈ (-oo; -1-2√2] U [-1+2√2; +oo)Но по области определения x > 1ответ: x ∈ [-1+2√2; +oo)
Подробнее - на -
4,4(99 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ