Выражения связаны между собой: q×√(2x+8)= √(3x-8) q×√(3x-8)= 1
возведём в квадрат каждое выражение, не забывая про область определения: х>=8/3 имеем: q^2×(2x+8)=3x-8 q^2×(3x-8)=1 из второго выразим q^2 =1/(3х-8) и подставим в 1 (2x+8)/(3x-8)=3x-8 после преобразований имеем: 2х+8=9x^2-48x+64 или 9x^2-50x+56,получив квадратное уравнение,решаем через дискриминант,по формуле D=√b^2-4ac=√50^2-4×9×56=√2500-2016=√484=22; x1=-b+√D/2a=50+√484/2×9=50+22/18=72/18=4; x2=-b-√D/2a=50-√484/2×9=50-22/18=28/18=14/9 корни 4 и 14/9, но 14/9<8/3 - не подходит, значит ответ х=4 Таким образом при x=4 геометрическая последовательность будет такой: 16;4;1
3х - 4у= 5
5х + 2у = 17 | · 2
3х - 4у= 5
10x + 4y = 34
Складываем уравнения почленно
13х = 39
х=39 : 13
х=3
3 · 3 - 4у = 5
9 - 4у = 5
- 4у = 5 - 9
-4у = - 4
у = -4 : (- 4)
у = 1
ответ: (3; 1)