1) ОДЗ -Sinx >0,⇒Sinx < 0,⇒ -π +2πk < x < 0+2πk, k ∈ Z 2) tg³x - tgx = 0 tgx(tg² x - 1)= 0 tgx = 0 или tg²x - 1 = 0 x = πn, n ∈ Z tgx = +- 1 не подходит к ОДЗ x = +-π/4 + πm, m∈Z a) x = π/4 + πm, m ∈Z б) x = -π/4 + πm , m ∈Z ( не подходит по ОДЗ) 3) [π; 5π/2] x = 5π/4 x = 9π/4
Всё что нужно для решения - физическая формула N*t=A (мощность на время равно работа) Хотя для школы задача действительно может казаться не очень тривиальной. начальное условие: (N1+N2)8=A N1*t=A N2(t+12)=A A/N1 = ? A/N2 = ?
из второго выражаем t=A/N1 подставляем в третье N2(A/N1+12)=A итого система из 2 уравнений: (N1+N2)8=A N2(A/N1+12)=A
из первого выражаем A/8 - N1 = N2 Подставляем N2 во второе, далее идут его преобразования (A/8 - N1)(A/N1+12)=A A^2/8N1 +A/2 -12N1 = A A^2 - 4AN1 -12N1*8N1 = 0 преобразовываем, преобразование выполняется решением квадратного уравнения A^2 - 4AN1 -12N1*8N1 = (A-12N1)(A+8N1) итого корни -8N1 12N1 отрицательный корень не имеет физического смысла (A-12N1)(A+8N1)=0 A=12N1 A/N1=12 - искомое время
подставляя это в исходное N2(A/N1+12)=A получаем N2(12+12)=A A/N2=24 - второе искомое время
Всё что нужно для решения - физическая формула N*t=A (мощность на время равно работа) Хотя для школы задача действительно может казаться не очень тривиальной. начальное условие: (N1+N2)8=A N1*t=A N2(t+12)=A A/N1 = ? A/N2 = ?
из второго выражаем t=A/N1 подставляем в третье N2(A/N1+12)=A итого система из 2 уравнений: (N1+N2)8=A N2(A/N1+12)=A
из первого выражаем A/8 - N1 = N2 Подставляем N2 во второе, далее идут его преобразования (A/8 - N1)(A/N1+12)=A A^2/8N1 +A/2 -12N1 = A A^2 - 4AN1 -12N1*8N1 = 0 преобразовываем, преобразование выполняется решением квадратного уравнения A^2 - 4AN1 -12N1*8N1 = (A-12N1)(A+8N1) итого корни -8N1 12N1 отрицательный корень не имеет физического смысла (A-12N1)(A+8N1)=0 A=12N1 A/N1=12 - искомое время
подставляя это в исходное N2(A/N1+12)=A получаем N2(12+12)=A A/N2=24 - второе искомое время
2) tg³x - tgx = 0
tgx(tg² x - 1)= 0
tgx = 0 или tg²x - 1 = 0
x = πn, n ∈ Z tgx = +- 1
не подходит к ОДЗ x = +-π/4 + πm, m∈Z
a) x = π/4 + πm, m ∈Z
б) x = -π/4 + πm , m ∈Z ( не подходит по ОДЗ)
3) [π; 5π/2]
x = 5π/4
x = 9π/4