y(наиб) = 31 (в точке х = 2)
y(наим) = 5 (в точке x = 1)
На границах интервала.
Объяснение:
Для того, чтобы найти наибольшее и наименьшее значение функции нам необходимо:
Найти все стационарные точки.
Найти все критические точки.
Проверить границы интервала.
Пункт 1 - стационарные точки:Данные точки ищутся с производной. Найдем производную данной функции:
x'(t) = 8 - 4.
Приравниваем производную к 0:
8 - 4 = 0
t = ± = ±
- однако, эти точки не входят в наш интервал.
Таковых у нас нет, т.к. критические точки - это стационарные точки, но которые не входят в ОДЗ. (У нас ОДЗ от (-∞;∞+)).
Пункт 3 - границы графика:Подставляем значения границ интервала и находим значения в этих точках:
x(1)=2*1^4−4*1+7 = 5
x(2)=2*2^4−4*2+7 = 31
Следовательно, это и есть наибольшее и наименьшее значение функции на заданном интервале.
⇒AB=BC=15⇒QC=15-8=7 и АР=7, ∠BAQ=∠BCPиз равенства ΔBPC и ΔBQA
∠APO=∠CQO как смежные с углами ∠BPC и ∠BQA⇒ ΔAPO=ΔCQO⇒PO=OQ
⇒CO+OQ=9
PΔCOQ=9+7=16