М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
kakaxa2283
kakaxa2283
16.10.2021 06:14 •  Алгебра

Ккакому виду можно отнести следующее уравнение? x4−10x^2+9=0 1. квадратное уравнение общего вида 2.нет правильного ответа 3.неполное квадратное уравнение 4. уравнение, сводящееся к квадратному 5. квадратное уравнение

👇
Ответ:
987helen
987helen
16.10.2021
4. Уравнение сводящееся к квадратному, путем замены переменной, например, х²=а, получаем:
а²-10а+9=0
4,6(72 оценок)
Открыть все ответы
Ответ:
daniil069531671
daniil069531671
16.10.2021
1. 1) 1-(a^2+b^2)^2=(1-(a^2+b^2))•(1+(a^2+b^2))=(1-a^2-b^2)•(1+a^2+b^2)
2) 100-(3a+7y)^2=(10-(3a+7y))•(10+(3a+7y))=(10-3a-7y)•(10+3a+7y)
3) 9x^2y^4-(a-b)^2=(3xy^2-(a-b))•(3xy^2+(a-b))=(3xy^2-a+b)•(3xy^2+a-b)

2. 1) (m-2n)^2-(2p-3q)^2=((m-2n)-(2p-3q))•((m-2n)+(2p-3q))=(m-2n-2p+3q)•(m-2n+2p-3q)
2) 16(a+b)^2-9(x+y)^2=16 (a^2+2ab+b^2)-q•(x^2+3xy+y^2)=16a^2+32ab+16b^2-qx^2-2qxy-ay^2
3) (2a-3c)^2-(4b+5d)^2=((2a-3c)-(4b+5a))•((2a-3c)+(4b+5d))=(2a-3c-4b-5d)•(2a-3c+4b+5d)
4) 9(a-b)^2-4(x-y)^2=(3 (a-b)-2 (x-y))•(3 (a-b)+2 (x-y))=(3a-3b-2x+2y)•(3a-3b+2x-2y)

3. 1) a^8-b^8=(a^4-b^4)•a^4+b^4)=(a^2-b^2)•(a^2+b^2)•(a^4+b^4)=(a-b)•(a+b•(a^2+b^2)•(a^4+b^4)
2) a^6-b^6=(a^3-b^3)•(a^3+b^3)=(a-b)•a^2+ab+b^2)•(a+b)•(a^2-ab+b^2)
3) (a+b)^4-(a-b)^4=((a+b)^2-(a-b)^2)•((a+b)^2+(a-b)^2)=(a^2+2ab+b^2-(a^2-2ab+b^2))•(a^2+2ab+b^2+a^2-2ab+b^2)=(a^2+2ab+b^2-a^2+2ab-b^2)•(2a^2+2b^2)=4ab×2 (a^2+b^2)=8ab•(a^2+b^2)

4. ax^2+bx^2-bx-ax+cx^2-cx=x•(ax+bx-b-a+cx-c)
4,6(36 оценок)
Ответ:
edynorozhok
edynorozhok
16.10.2021
Находим производную заданной функции:
y'( \frac{x^2+4}{x^2-4})= \frac{(x^2+4)'*(x^2-4)-(x^2+4)*(x^2-4)'}{(x^2-4)^2}=- \frac{16x}{(x^2-4)^2}.
Отсюда видно, что производная равна нулю только в одной точке х = 0.
Но у функции есть 2 точки разрыва, которые легко увидеть, если уравнение записать в виде (разложив знаменатель на множители):
y= \frac{x^2+4}{(x-2)(x+2)} .
То есть в точках х=-2 и х=2 функция имеет разрыв.
В этих же точках производная не существует.
Из этого следует, что функция имеет 3 критические точки:
х = -2,  х = 0,  х = 2.
Найдём знаки производной левее и правее этих точек:
х =    -3          -2      -1          0         1          2           3
y' = 1.92          -       1.78      0      -1.78        -        -1.92.
Из этой таблицы видно, что у функции есть местный максимум в точке х = 0, при переходе через которую производная меняет знак с + на -.
Также можно дать ответ на монотонность функции:
Где производная положительна - там функция возрастает, где производная отрицательна - там функция убывает.
Функция возрастает:   (-∞ < x < -2) ∪ (-2 < x < 0),
                  убывает:   (0 < x < 2)  ∪ (2 < x < +∞).
4,7(84 оценок)
Новые ответы от MOGZ: Алгебра

MOGZ ответил

Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ