A) (6sin^3-sin^2x-sinx)/√tgx=0 ОДЗ: tgx>0, т.к. знаменатель не равен 0, а подкоренное выражение должно быть больше или равно нуля, следовательно, общее решение будет tgx>0 x>Πk, k€Z Решение: 6sin^3-sin^2x-sinx=0 Пусть t=sinx, где t€[-1;1], тогда 6t^3-t^2-t=0 t(6t^2-t-1)=0 Решим распадающиеся уравнение: 1) t=0 2) 6t^2-t-1=0 D=1+24=25 t1=1-5/12=-1/3 t2=1+5/12=1/2 Вернёмся к замене: 1) sinx=0 x=Πn, n€Z - посторонний корень, т.к. tgx>0 2) sinx=-1/3 x=(-1)^m arcsin(-1/3)+Πm, m€Z 3) sinx=1/2 x1=Π/6+2Πr, r€Z x2=5Π/6+2Πr, r€Z ответ: (-1)^m arcsin(-1/3)+Πm, m€Z; Π/6+2Πr, 5Π/6+2Πr, r€Z
1. Чтобы упростить многочлен, приведите подобные слагаемые. Найдите одночлены с одинаковой буквенной частью. Сложите их.
2. В задачах, которые требуют разложения многочлена на множители, определите общий множитель данного выражения. Для этого сначала вынесите за скобки те переменные, которые входят в состав всех членов выражения. Причем эти переменные должны иметь наименьший показатель. Затем вычислите наибольший общий делитель каждого из коэффициентов многочлена. Модуль полученного числа будет коэффициентом общего множителя.
3. Если выражение не имеет общего множителя, попробуйте разложить его группировки. Для этого объедините в группы те члены, у которых имеются общие множители. Вынесите общий множитель каждой группы за скобки. Вынесите за скобки общий множитель у всех образовавшихся групп.
4. Некоторые многочлены раскладываются на множители при формул сокращенного умножения. Для этого приведите многочлен к нужному виду группировки или при вынесения за скобки общего множителя. Далее примените соответствующую формулу сокращенного умножения.
5. Некоторые многочлены можно разложить на множители методом неопределенных коэффициентов.
-3x+2y-6=0 чтобы найти точку пересечения с осью абсцисс, нужно y приравнять к нулю в уравнении и выразить х, -3х+2*0-6=0 х=-2 Значит точка пересечения с осью абсцисс (ОХ) это точка (-2,0)
чтобы найти точку пересеч. с осью ординат нужно х приравнять к нулю и найти у
-3*0+2y-6=0 y=3 Значит точка пересечения с ОУ точка (0,3)
Если точка К принадлежит графику, значит при подстановки туда координат точки К мы получим тождество, т.е. первую координату точки К ставим вместо х, а вторую координату вместо у -3*1/3 +2*3,5-6=0 Получили тожедство 0=0, значит точка принадлежит
ОДЗ:
tgx>0, т.к. знаменатель не равен 0, а подкоренное выражение должно быть больше или равно нуля, следовательно, общее решение будет tgx>0
x>Πk, k€Z
Решение:
6sin^3-sin^2x-sinx=0
Пусть t=sinx, где t€[-1;1], тогда
6t^3-t^2-t=0
t(6t^2-t-1)=0
Решим распадающиеся уравнение:
1) t=0
2) 6t^2-t-1=0
D=1+24=25
t1=1-5/12=-1/3
t2=1+5/12=1/2
Вернёмся к замене:
1) sinx=0 x=Πn, n€Z - посторонний корень, т.к. tgx>0
2) sinx=-1/3
x=(-1)^m arcsin(-1/3)+Πm, m€Z
3) sinx=1/2
x1=Π/6+2Πr, r€Z
x2=5Π/6+2Πr, r€Z
ответ: (-1)^m arcsin(-1/3)+Πm, m€Z; Π/6+2Πr, 5Π/6+2Πr, r€Z