М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ира10141
ира10141
02.09.2020 20:23 •  Алгебра

Решите неравенство: 0,3+x> 1 0,4-x< 0 -9x> -63 -x< 10 -18x> -27 -15x< 25

👇
Ответ:
Viktoria12345678901
Viktoria12345678901
02.09.2020
1)0,3+x>1.            2) 0,4-x<0.               3)-9х>-63
 х>1-0,3.                   -х<-0,4                     х>-63÷(-9)
 х>0,7.                         х<-0,4÷(-1).           х<7
                                    х>0,4.                     ответ:(-∞;7)
ответ:(0,7;+∞).     ответ:(0,4;+∞).     6)-15x<25
4)-х<10.                5) -18x>-27.                     х>- \frac{25}{15}  х<10÷(-1).                 х>-27÷(-18).   ответ:(- \frac{25}{15} ;+∞)
х>-10.                         х<1,5.                   
ответ:(-10;+∞).       ответ:(-∞;1,5)
Решите неравенство: 0,3+x> 1 0,4-x< 0 -9x> -63 -x< 10 -18x> -27 -15x< 25
4,5(44 оценок)
Открыть все ответы
Ответ:
BC122
BC122
02.09.2020
1) xy'+y=0
Разрешим наше дифференциальное уравнение относительно производной
y'=- \dfrac{y}{x} - уравнение с разделяющимися переменными
Воспользуемся определением дифференциала
\dfrac{dy}{dx} =- \dfrac{y}{x} \\ \\ \dfrac{dy}{y} =- \dfrac{dx}{x}
Интегрируя обе части уравнения, получаем
\ln|y|=\ln| \frac{1}{x} |+\ln C\\ \\ \ln|y|=\ln| \frac{C}{x}|
y= \dfrac{C}{x}- общее решение

(1-x^2) \frac{dx}{dy} +xy=0\\ \\ (1-x^2) \frac{dx}{dy} =-xy
Разделяем переменные
\dfrac{(x^2-1)dx}{x} = ydy

интегрируя обе части уравнения, получаем

-\ln|x|+ \dfrac{x^2}{2} = \dfrac{y^2}{2} +C - общий интеграл

Решение задачи Коши нет, т.к. при х=0 логарифм ln0 не существует

Пример 3. x^2+y^2-2xy\cdot y'=0
Убедимся, является ли дифференциальное уравнение однородным.
(\lambda x)^2+(\lambda y)^2-2\cdot\lambda x\cdot \lambda y\cdot y'=0 |:\lambda^2\\ \\ x^2+y^2-2xyy'=0

Итак, дифференциальное уравнение является однородным.
Исходное уравнение будет уравнением с разделяющимися переменными если сделаем замену 
y=ux, тогда y'=u'x+u

Подставляем в исходное уравнение

x^2+u^2x^2-2x\cdot ux(u'x+u)=0\\ \\ x^2(1+u^2-2uu'x-2u^2)=0\\ \\ x=0\\ \\ 1-u^2-2uu'x=0\\ \\ u'= \dfrac{1-u^2}{2ux}

Получили уравнение с разделяющимися переменными

Воспользуемся определением дифференциала

\dfrac{du}{dx} =\dfrac{1-u^2}{2ux}

Разделяем переменные

\dfrac{du^2}{1-u^2} = \dfrac{dx}{x}

Интегрируя обе части уравнения, получаем

\ln\bigg| \dfrac{1}{1-u^2} \bigg|=\ln|Cx|

\dfrac{1}{1-u^2} =Cx

Обратная замена

\dfrac{x^2}{x^2-y^2} =Cx - общий интеграл

Пример 4. y''-4y'+4=0
Это дифференциальное уравнение второго порядка с постоянными коэффициентами также однородное.
Воспользуемся методом Эйлера
Пусть y'=e^{kx}, тогда будем иметь характеристическое уравнение следующего вида:
k^2-4k+4=0\\ (k-2)^2=0\\ k_{1,2}=2

Тогда общее решение будет иметь вид:

y=C_1y_1+C_2y_2=C_1e^{2x}+C_2xe^{2x} - общее решение

Пример 5. y''+4y'-5y=0
Аналогично с примером 4)
Пусть y=e^{kx}, тогда получаем
k^2+4k-5=0\\ (k+2)^2-9=0\\ \\ k+2=\pm 3\\ k_1=1\\ k_2=-5

Общее решение: y=C_1e^{x}+C_2e^{-5x}

Найдем производную функции
y'=C_1e^x-5C_2e^{-5x}

Подставим начальные условия

\displaystyle \left \{ {{4=C_1+C_2} \atop {2=C_1-5C_2}} \right. \to \left \{ {{C_1=4-C_2} \atop {2=4-C_2-5C_2}} \right. \to \left \{ {{C_1= \frac{11}{3} } \atop {C_2=\frac{1}{3} }} \right.

y=\frac{11}{3} e^x+\frac{1}{3} e^{-5x} - частное решение
4,4(24 оценок)
Ответ:
polina359674
polina359674
02.09.2020
А) 3х -2у =8 ⇒ 2у = 3х -8 ⇒ у = 1,5 х -4  
В этом уравнении угловой коэффициент к = 1,5.
Любое уравнение , в котором к≠ 1,5 будет иметь  единственное решение  с данным
(у = 2х +8; у = -2х +6 и т.д.)
б) -5х +4у =3 ⇒ 4у = 3х -8 ⇒ у = 5 х +3  
В этом уравнении угловой коэффициент к = 5. 
Любое уравнение , в котором к≠ 5 будет иметь  единственное решение  с данным
(у = 2х +8; у = -2х +6 и т.д.)
в) -3х -7 у =2  ⇒ 7у = -3х - 2 ⇒ у = -3/7 х -  2/7 
В этом уравнении угловой коэффициент к = -3/7 
Любое уравнение , в котором к≠ -3/7 будет иметь  единственное решение  с данным
(у = 2х +8; у = -2х +6 и т.д.)
г)5х + 6у = 9 ⇒ 6у = -5х - 9 ⇒ у = -5/6 х - 9/6  
В этом уравнении угловой коэффициент к =-5/6. 
Любое уравнение , в котором к≠ -5/6 будет иметь  единственное решение  с данным
(у = 2х +8; у = -2х +6 и т.д.)
4,7(92 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ