в случае комплексных чисел существование предела последовательности равносильно существованию пределов соответствующих последовательностей вещественных и мнимых частей комплексных чисел.
предел (числовой последовательности) — одно из основных понятий анализа. каждое вещественное
число может быть представлено как предел последовательности приближений к нужному значению. система счисления предоставляет такую последовательность уточнений. целые и рациональные числа описываются периодическими последовательностями приближений, в то время как иррациональные числа описываются
непериодическими последовательностями приближений. в численных методах, где используется представление чисел с конечным числом знаков, особую роль играет выбор системы приближений. критерием качества системы приближений является скорость сходимости. в этом отношении, оказываются эффективными
представления чисел в виде цепных дробей.
5х+25*(7х-5):5=1
5х+5*(7х-5)=1
5х+35х-25=1
40х=1+25
40х=26
х=0.65
у=1-5*0.65:25=-0.09