Общая схема исследования и построения графика функции
При построении графиков функций можно придерживаться следующего плана:
1. Найти область определения функции и область значений функции, выявить точки разрыва, если они есть - их нет, поэтому D(f) = R.
2. Выяснить, является ли функция четной или нечетной - ни та, ни другая.
3. Выяснить, является ли функция периодической - нет.
4. Найти точки пересечения графика с осями координат (нули функции).
Пересечение с осью ОУ: х = 0, у = 0,
с осью ОХ: у = 0, x³-3x²-9x = 0, вынесем х за скобки:
х(x²3x²-9) = 0, отсюда получаем значение первого корня:
х₁ = 0, далее приравниваем нулю квадратный трёхчлен:
x² - 3x - 9 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:
D=(-3)^2-4*1*(-9)=9-4*(-9)=9-(-4*9)=9-(-36)=9+36=45;
Дискриминант больше 0, уравнение имеет 2 корня:
x₂=(2root45-(-3))/(2*1)=(√45+3)/2=√45/2+3/2 = 3√2/2+1.5 ≈ 4.85410197;
x₃=(-√45-(-3))/(2*1)=(-√45+3)/2=-√45/2+3/2=-3√2/2+1.5≈-1.85410197.
5. Найти асимптоты графика - не имеет.
6. Вычислить производную функции f'(x) и определить критические точки.
f(x)=x³-3x²-9x, f'(x)=3x²-6x-9 приравниваем нулю:
3x²-6x-9 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:
D=(-6)^2-4*3*(-9)=36-4*3*(-9)=36-12*(-9)=36-(-12*9)=36-(-108)=36+108=144;
Дискриминант больше 0, уравнение имеет 2 корня:
x₁=(√144-(-6))/(2*3)=(12-(-6))/(2*3)=(12+6)/(2*3)=18/(2*3)=18/6=3;
x₂=(-√144-(-6))/(2*3)=(-12-(-6))/(2*3)=(-12+6)/(2*3)=-6/(2*3)=-6/6=-1.
Критические точки x₁ = 3, x₂ = -1.
7. Найти промежутки монотонности функции: (-∞;-1), (-1;3),(3;+∞).
8. Определить экстремумы функции f(x).
Надо определить знаки производной на промежутках монотонности.
х = -2, у' = 3*4 + 12 - 9 = 15 функция возрастающая,
х = 2, у' = 3*4 - 12 - 9 = -9 функция убывающая,
х = 4, у' = 3*16 - 24 - 9 = 15 функция возрастающая.
9. Вычислить вторую производную f''(x) = 6х - 6 = 6(х - 1).
10. Определить направление выпуклости графика и точки перегиба:
функция вогнутая на промежутках [1, oo),11. Построить график, используя полученные результаты исследования.
Чтобы выполнить сложение или вычитание алгебраических дробей с одинаковыми знаменателями, надо найти сумму или разность числителей, а знаменатель оставить без изменений.
Пример 1. Выполните сложение алгебраических дробей:
а) a + 3 + a - 3 б) 2b - 1 + b + 4
b b 2 2
Решение: складываем числители дробей и выполняем приведение подобных членов (если они есть):
а) a + 3 + a - 3 = (a + 3) + (a - 3) = a + 3 + a - 3 = 2a
b b b b b
б) 2b - 1 + b + 4 = (2b - 1) + (b + 4) = 2b - 1 + b + 4 = 3b + 3
2 2 2 2 2
Пример 2. Выполните вычитание алгебраических дробей:
а) x + 5 - 5x б) a + b - a + 4
3 3 a - 5 a - 5
Решение: вычитаем из числителя первой дроби числитель второй дроби и выполняем приведение подобных членов (если они есть):
а) x + 5 - 5x = x + 5 - 5x = 5 - 4x
3 3 3 3
б) a + b - a + 4 = (a + b) - (a + 4) = a + b - a - 4 = b - 4
a - 5 a - 5 a - 5 a - 5 a - 5
Сложение и вычитание алгебраических дробей с одинаковыми знаменателями в виде общих формул:
a + b = a + b и a - b = a - b (c≠0)
c c c c c c
Если дроби имеют знаменатели, состоящие из противоположных выражений, то есть выражений, отличающихся только знаком, надо тождественно преобразовать одну из дробей, чтобы привести их к общему знаменателю. Преобразование выполняется в соответствии с правилами знаков:
a = -a
b -b
Данное преобразование можно рассматривать как умножение числителя и знаменателя дроби на -1. Следовательно, если числитель и знаменатель алгебраической дроби заменить на противоположные выражения, то получится дробь, равная данной. Полученную дробь можно переписать, поставив один из минусов перед дробью:
a = -a = - a = - -a
b -b -b b
Также, любую отрицательную дробь можно сделать положительной, перенеся минус, стоящий перед дробью, в числитель или знаменатель:
- a = -a = a
b b -b
Пример 1. Найдите сумму дробей:
5a + 3a
b - c c - b
Решение: чтобы выполнить сложение, поменяем знаки перед второй дробью и в её знаменателе на противоположные:
5a + 3a = 5a - 3a = 5a - 3a = 2a
b - c c - b b - c -(c - b) b - c b - c b - c
Пример 2. Найдите разность дробей:
n + 5 - 2n
n2 - m m - n2
Решение: чтобы выполнить вычитание, перенесём знак минус, стоящий перед второй дробью, в её знаменатель:
n + 5 - 2n = n + 5 + 2n = n + 5 + 2n = 3n + 5
n2 - m m - n2 n2 - m -(m - n2) n2 - m n2 - m n2 - m
Сложение и вычитание с разными знаменателями
Чтобы найти сумму или разность алгебраических дробей с разными знаменателями, надо:
найти общий знаменатель,
привести алгебраические дроби к общему знаменателю,
выполнить сложение или вычитание,
сократить полученную дробь, если это возможно.
Пример 1. Выполните сложение дробей:
2a + b
a + b a - b
Решение: находим общий знаменатель. Он будет равен произведению знаменателей данных дробей:
(a + b)(a - b)
Как находить общий знаменатель, Вы можете узнать на странице Приведение алгебраических дробей к общему знаменателю. Далее умножаем числитель каждой дроби на дополнительный множитель:
2a(a - b) = 2a2 - 2ab
b(a + b) = ab + b2
Общий знаменатель можно свернуть в разность квадратов. В итоге у нас получится:
2a + b = 2a2 - 2ab + ab + b2 =
a + b a - b a2 - b2 a2 - b2
= 2a2 - 2ab + ab + b2 = 2a2 - ab + b2
a2 - b2 a2 - b2
Пример 2. Выполните вычитание дробей:
b - 2
a2 - ab a - b
Решение: разложим знаменатель первой дроби на множители:
a2 - ab = a(a - b)
Так как данное выражение делится на знаменатель второй дроби, то возьмём его в качестве общего знаменателя. Значит, теперь нам надо умножить числитель второй дроби на дополнительный множитель a:
2 · a = 2a
Получаем:
b - 2 = b - 2a = b - 2a
a2 - ab a - b a(a - b) a(a - b) a(a - b)
Пример 3. Выполните сложение:
x + x2
1 - x
Решение: запишем первое слагаемое в виде дроби и приведём её к знаменателю 1 - x:
x + x2 = x + x2 = x(1 - x) + x2 = x - x2 + x2
1 - x 1 1 - x 1 - x 1 - x 1 - x 1 - x
Теперь можно выполнить сложение дробей с одинаковыми знаменателями:
x - x2 + x2 = x - x2 + x2 = x
1 - x 1 - x 1 - x 1 - x
Точно также можно выполнять сложение и вычитание алгебраических дробей с любыми многочленами.
Объяснение:
решаем :
20/ 1600= 2/160= 1/80
ответ 1/80