д) (u+v)(u-v)(u-v)
е) (u +v)(u^2 -uv+v^2)(u+v)
2) а) 1/х1 +1/х2 = (х2 +х1)/х1*х2 по теореме Виета х2+х1= -1/6 х1*х2 = -2/6, значит
1/х1 +1/х2 = (-1/6): (-2/6)= 1/2=0,5
в) (х1^3 +x2 ^3)/(x1 ^3 * x2^3) = (x1+x2)(x1^2 -x1*x2 +x2^2)/(x1*x2)^3 = (x1+x2)(x1^2 -x1*x2 +x2^2 -2x1*x2+2x1*x2)/(x1*x2)^3 = (x1+x2)((x1 +x2)^2 -3x1x2)/(x1*x2)^3 = -1/6 * (1/36 +2/3)/ (-8/216) = -1/6 *25/36 /(-8/216) = -25/216 *(-216/8) = 25/8
б) (-1/6)^2 - 2* (-2/6))^2 - 2*(-2/6)^2 = (1/36 +4/6)^2 - 4/18 = 625/1296 - 4/18 =337/1296
Сначала найдём значения параметра k. Приравняем оба графика, поскольку они пересекаются, а затем уже наложим дополнительные условия.
kx = -x² - 1
x² + kx + 1 = 0
Графики будут иметь одну общую точку тогда и только тогда, когда данное квадратное уравнение будет иметь 1 корень. Найдём те k, при которых данное квадратное уравнение имеет 1 корень. Если квадратное уравнение имеет 1 корень, то его дискриминант строго равен 0.
D = b² - 4ac = k² - 4
D = 0 k² - 4 = 0
k² = 4
k1 = 2; k2 = -2
Значит, при k = 2 и при k = -2 оба графика буцдут иметь ровно одну общую точку.
Теперь построим такие прямые. Надо построить y = -x² - 1 и прямые y = 2x, y = -2x. Скажу просто на всякий случай, что обе прямые будут симметричны относительно оси ox. Сейчас пришлю рисунок с построением(надеюсь, вы понимаете, как строятся эти прямые). Построение лишь приближённое и грубое, но видно, что обе прямые касаются параболы в какой-то точке, то есть фактически имеет с ней одну единственную точку.