Рассмотрим по порядку: 1. Похоже, потерялся знак >, потому что стоит точка. Тогда неравенство верно, ведь если из большего числа отнять меньшее, то получится положительное число, а оно явно больше -21. 2. Неверно, так как чем больше абсолютная величина отрицательного числа, тем это число меньше. Например, пусть a = 10, b = 5 (нам разрешено брать натуральные a и b). Тогда -2*10 < -2*5, потому что -20 < -10 3. Неверно, потому что частное меньше единицы, если числитель меньше знаменателя, а по условию a > b 4. Неверно, ибо a > b
1. 8х+у=8 (12х+у=4)·(-1) это нужно для того, чтобы убрать одну переменную. Получается: 8х+у=8 -12х-у=-4 2. Теперь складываем верхние и нижние "х ", потом "у" и потом числа: ⇒8х+(-12х), у+(-у), 8+(-4) Получилось: -4х=4 (далее решаем уравнение) х=-1 3. Следующим действием восстанавливаем запись системы: Вначале пишем х=-1, а за второе уравнение принимаем любое понравившееся: 8х+у=8 или 12х+у=4 Я выбрала 1-ое: х=-1 8х+у=8 4. Теперь подставляем получившееся число вместо "х": х=-1 8·(-1)+у=8 5.Далее решаем уравнение: х=-1 у=16 6. Делаем проверку: 8·(-1)+16=8 8=8- верно
9x^2-18x+9 - (x^2-32x+256) =0
9x^2-18x+9 - x^2+32x-256 = 0
8x^2 + 14x - 247 = 0
a = 8, k=7, c=-247
D' = k^2 - ac = 49 + 1976 = 2025.
x1 = (-k+корень из D)/a = (-7+45) /8 = 38/8.
X2 = (-k - корень из D)/ a = (-7-45)/8 = -52/8.
Вроде так, если вычисления правильные.