пусть первое число равно х, а второе у. Тогда 2х+у=11, а x^2+y^2=25.
Получаем систему уравнений:
2х+у=11;
x^2+y^2=25.
Выразим из первого уравнения у:
у=11-2х
и подставим полученное значение во втрое:
x^2+(11-2x)^2=25
x^2+121-44x+4x^2=25
5x^2-44x+121-25=0
5x^2-44x+96=0
Найдем дискриминант квадратного уравнения
D=b^2-4ac=1936-4*5*96=16
Так как дискриминант больше нуля то, квадратное уравнение имеет два корня:
x1=(-b+√D)/(2a)=(44+√16)/(2*5)=4.8
x2=(-b-√D)/2a=(44-√16)/(2*5)=4
В условии задачи сказано, что взяты натуральные числа, значит, нам подходит только х=4
Найдем у:
у=11-2х
у=11-2*4
у=3
ответ: взяты числа 4 и 3
1) Cosx = t
6t² + t -1 = 0
D = b² -4ac = 1 - 4*6*(-1) = 25 > 0
t₁ = (-1+5)/12 = 4/12 = 1/3
t₂ = (-1 -5)/12 = -1/2
a) Cosx = 1/3 б) Сosx = -1/2
x = +-arcCos(1/3) + 2πk , k ∈Z x = +-arcCos(-1/2) + 2πn , n ∈Z
x = +- 2π/3 +2πn , n ∈ Z
2) учтём, что Cosx = 2Cos²x/2 -1
наше уравнение:
Cosx/2 = 1 + 2Cos²x/2 -1
Cosx/2 = t
2Cos²x/2 - Cosx/2 = 0
Cosx/2(2Cosx/2 -1) = 0
Cosx/2 = 0 или 2Cosx/2 -1 = 0
x/2 = π/2 + 2πk , k ∈Z Cosx/2 = 1/2
x = π + 4πk , k ∈ Z x/2 = +-arcCos(1/2) + 2πn , n ∈ Z
x/2= +- π/3+ 2πn , n ∈ Z
x = +-2π/3 + 4 πn , n ∈ Z