График расположен выше оси ОХ. Точки пересечения с осью ОХ: . Графики функций - это параболы , ветви которых направлены вниз, а вершины в точках (0, а). При х=0 sin0=0 и точка (0,0) является точкой пересечения графика у=|sinx| и оси ОУ, на которой находятся вершины парабол. При а=0 графики y=|sinx| и y=x² имеют одну точку пересе- чения - (0,0), при а<0 точек пересе- чения вообще нет. А при а>0 будет всегда 2 точки пересе- чения этих графиков и соответственно, будет выполняться заданное неравенство. То есть одна точка пересечения при а=0. ответ: а=0.
1) Положим что 7 это один из катетов, тогда 5 либо второй катет (высота) или высота проведенная к гипотенузе, пусть 5 это высота к гипотенузе и b второй катет, тогда высота равна 7b/√(b^2+49)=5 , откуда b=35/√24 то есть такой катет существует, значит для первого случая возможны два варианта , это треугольники (катет,катет,гипотенуза)=(5,7,√74) и (7,35/√24,49/√24)
2) Пусть 7 это гипотенуза, тогда 5 может быть одним из катетов, тогда второй катет равен √(49-25)=√24 (существует) или высота проведенная к гипотенузе, пусть a,b тогда катеты , откуда ab/7=5 и a^2+b^2=49 ab=35 a^2+b^2=49
a=35/b откуда b^4-49b^2+1225=0 D<0 то есть не существует такого треугольника
Значит существуют всего в сумме 3 различных прямоугольных треугольника с требуемыми условиями.
1) a1=1, an=133, d=2
an=a1+(n-1)*d
133=1+(n-1)*2
132=2n-2, n=67
S67=((1+133)/2)*67=67*67=4489