Дано: bn – геометрическая прогрессия;
b1 + b2 = 30, b2 + b3 = 20;
Найти: b1; b2; b3 - ?
Формула члена геометрической прогрессии: bn = b1 * q^(n – 1),
где b1 – первый член геометрической прогрессии, q – её знаменатель, n – количество членов прогрессии этой формулы выразим второй и третий члены заданной прогрессии:
b2 = b1 * q^(2 – 1) = b1 * q;
b3 = b1 * q^(3 – 1) = b1 * q^2.
Т.о. имеем:
b1 + b2 = 30; и b2 + b3 = 20;
b1 + b1 * q = 30; b1 * q + b1 * q^2 = 20;
b1 (1 + q) = 30; b1 (q + q^2) = 20;
b1 = 30 / (1 + q). b1 = 20 / (q + q^2).
Т.е. 30 / (1 + q) = 20 / (q + q^2);
30 * (q + q^2) = 20 * (1 + q);
30q + 30q^2 = 20 + 20q;
30q^2 + 10q – 20 = 0;
D = (10)^2 – 4 * 30 * (-20) = 2500; sqrt(D) = sqrt (2500) = 50;
q1 = (-10 + 50) / 60 = 2/3;
q2 = (-10 - 50) / 60 = -1.
Подставим оба полученных значений q выражение для нахождения b1:
b1 = 30 / (1 + 2/3) = 30 / (5/3) = 90/5 = 18;
b1 = 30 / (1 + (-1)) = 30 / 0 – смысла не имеет, следовательно, q = 2/3.
b2 = b1 * q = 18 * 2/3 = 12;
b3 = b1 * q^2 = 18 * 2/3^2 = 8.
ответ: b1 = 18; b2 = 12; b3 =8.
Объяснение:
I. 1)-8x=3,2
х=3,2/(-8)
х=-0,4
2)4-5x=0
-5х=-4
х=-4/(-5)
х=0,8
3)10x+7=3
10х=3-7
10х=-4
х=-4/10
х=-0,4
4)3-4x=x-12
-4х-х=-12-3
-5х=-15
х=-15/(-5)
х=3
5)(x-7)-(3x+5)=2
х-7-3х-5=2
-2х=2+7+5
-2х=14
х=14/(-2)
х=-7
6) 3(2x-1)+12=x
6х-3+12-х=0
5х=-12+3
5х=-9
х=-9/5
х=-1,8
II. Пусть в цирк купили х билетов, тогда в театр 2х, составим уравнение:
х+2х=165
3х=165
х=165/3
х=55 билетов купили в цирк.
Если х=55, то в театр купили 2х=2*55=110 билетов.
ответ: в цирк - 55 билетов, в театр - 110 билетов.
III. Cоставим пропорцию:
48 чел 8%
х чел 100%
х=48*100/8=600 человек учится в школе.
ответ: 600 человек.
х=2+у
(2+у)²-2у(2+у)+у²=(2+у)у+1
х=2+у
4+4у+у²-4у-2у²+у²-2у-у²-1=0
х=2+у
-у²-2у+3=0
х=2+у
у²+2у-3=0
D=b²-4ac
D=4+12=16; √16=4
у=-2-4/2=-3
у=(-2)+4/2=1
х=-1
х=3