М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Vados2002k
Vados2002k
01.11.2020 05:50 •  Алгебра

(a-1) все во 2 степени -(а+1)(а-2) если а= -0,25 и решить

👇
Ответ:
(а-1)²-(а+1)(а-2)=а²-2а+1-а²+2а-а+2=3-а=3-(-0,25)=3,25
4,6(64 оценок)
Открыть все ответы
Ответ:
dgotshalk
dgotshalk
01.11.2020
1) Ищем границы интегрирования
-х² + х + 6 = х + 2
-х² = -4
х² = 4
х = +- 2
Теперь ищем интеграл, под интегралом (-х² + х + 6)dx в пределах от -2 до 2, потом интеграл, под интегралом (х +2)dx в пределах от -2 до 2, делаем вычитание и получаем площадь фигуры.
а) интеграл =( -х³/3 +х²/2 +6х)| в пределах от -2 до 2=56/3
б)интеграл = (х²/2 +2х)|  в пределах от -2 до 2 = 8
S = 56/3 - 8 = 4
2)   Ищем границы интегрирования
4х -х² = х 
-х² +3х =0
х =0
х = 3
Теперь ищем интеграл, под интегралом (4 х -х²) dx в пределах от 0 до 3  потом интеграл, под интегралом хdx в пределах от 0 до 3, делаем вычитание и получаем площадь фигуры.
а) интеграл =(4 x²/2 -х³/3)| в пределах от 0 до 3=9
б)интеграл = (х²/2)|  в пределах от 0 до 3 = 4.5
  S = 9 - 4,5 = 4,5
4,8(76 оценок)
Ответ:
Lera123yf
Lera123yf
01.11.2020
Среднеарифметическое двух чисел всегда меньше большого числа на столько же, насколько оно больше меньшего числа. Ну например для чисел 17 и 25 – среднеарифметическое равно     21 = \frac{ 17 + 25 }{2} \ ,     и при этом 21 на 4 меньше двадцати пяти и на 4 больше семнадцати.

Когда Вася отдаёт Пете 6 монет и у них становится поровну, то они как раз и приходят к среднеарифметическому их начальных количеств монет. В итоге у Васи оказывается на 6 монет меньше изначального, а у Пети на 6 монет больше изначального. А значит, вначале у Васи было на 12 = 6 + 6 монет больше, чем у Пети.

Путь у Васи вначале x монет. Тогда у Пети x - 12 монет.

В первом случае всё как раз получается правильно:

x - 6 = ( x - 12 ) + 6 \ ;

Во втором случае у Васи-II оказывается x + 9 монет, а у Пети-II будет x - 12 - 9 монет. При этом у Пети-II монет в K раз меньше, т.е. если мы количество монет Пети-II мысленно увеличим в K раз, то их станет столько же, сколько и у Васи-II. На этом основании составим уравнение:

x + 9 = ( x - 12 - 9 ) K \ ;

x + 9 = ( x - 21 ) K \ ;

Далее это целочисленное уравнение можно решить двумя

[[[ 1-ый

K = \frac{ x + 9 }{ x - 21 } = \frac{ x - 21 + 21 + 9 }{ x - 21 } = \frac{ x - 21 + 30 }{ x - 21 } = \frac{ x - 21 }{ x - 21 } + \frac{30}{ x - 21 } = 1 + \frac{30}{ x - 21 } \ ;

K = 1 + \frac{30}{ x - 21 } \ ;

Чтобы K было целым, целой должен быть и результат деления в дроби, а чтобы K было максимальным, частное от деления в дроби должно быть максимальным, а значит её знаменатель должен быть минимальным, целым, положительным числом, что возможно только, когда     x - 21 = 1 \ ,     откуда:

x = 22 \ ; K = 31 \ ;

[[[ 2-ой

x + 9 = K x - 21 K \ ;

9 + 21 K = ( K - 1 ) x \ ;

x = \frac{ 9 + 21 K }{ K - 1 } = \frac{ 9 + 21 ( K - 1 + 1 ) }{ K - 1 } \ = \frac{ 9 + 21 ( K - 1 ) + 21 }{ K - 1 } = \frac{ 30 + 21 ( K - 1 ) }{ K - 1 } = \\\\ = \frac{30}{ K - 1 } + \frac{ 21 ( K - 1 ) }{ K - 1 } = \frac{30}{ K - 1 } + 21 \ ;

x = \frac{30}{ K - 1 } + 21 \ ;

Чтобы x было целым, целой должен быть и результат деления в дроби. А максимальное значение знаменателя в такой дроби (при том, что частное от деления остаётся целым) составляет K - 1 = 30 \ , откуда:

K = 31 \ ; x = 22 \ ;

О т в е т : K = 31 \ .
4,8(58 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ