М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
fdimon
fdimon
14.05.2021 03:21 •  Алгебра

13 егэ. подробно, желательно решение на фото.​

👇
Ответ:
a17mich17m
a17mich17m
14.05.2021
Tg²x+1=1/sin2x ;sin2x≠0
1/cos²x=1/sin2x
sin2x=cos²x
cosx(2sinx+cosx)=0
cosx≠0
2sinx+cosx=0
2tgx=-1
tgx=-1/2
x=-arctg1/2+πk;k€Z
4,6(25 оценок)
Открыть все ответы
Ответ:
мик104
мик104
14.05.2021
Разобьём квадрат со стороной 5 см на 25 квадратов со стороной 1 см. Будем рассматривать их как контейнеры. Точка попадает в контейнер, если она лежит либо на его сторонах, либо во внутренней области. Тогда, по принципу Дирихле, хотя бы в одном из контейнеров окажется две точки. [Некоторые точки могут попасть сразу в четыре контейнера (если такая точка упадёт на вершину квадрата, которая не лежит на стороне исходного квадрата), но для нас важно, что любая точка с необходимостью попадает хотя бы в один.]
Итак, в одном из контейнеров содержится две точки. Вспомним, что наш контейнер не что иное, как квадрат со стороной в 1 см.
Покажем, что расстояние между двумя точками квадрата со стороной в 1 см не превышает √2. Рассмотрим квадрат ABCD (рис.1) со стороной равной 1 см и две произвольные точки, которые лежат на квадрате.

\displaystyle z_1 = (x_1, \ y_1), \ z_2 = (x_2, \ y_2)\\\\
d(z_1, z_2) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}\\\\
0 \leq x_1 \leq 1, \ 0 \leq x_2 \leq 1, \ 0 \leq y_1 \leq 1, \ 0 \leq y_2 \leq 1\\\\ - 1 \leq x_1 - x_2 \leq 1, \ - 1 \leq y_1 - y_2 \leq 1\\\\
0 \leq (x_1 - x_2)^2 \leq 1, \ 0 \leq (y_1 - y_2)^2 \leq 1\\\\
0 \leq (x_1 - x_2)^2 + (y_1 - y_2)^2 \leq 1 + 1 = 2\\\\
0 \leq \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} \leq \sqrt{2}

Что и требовалось доказать.
Решите в квадрате со стороной 5 см расположено 26 точек. докажите, что среди них существуют две точк
4,7(68 оценок)
Ответ:
Алина050913
Алина050913
14.05.2021

x^2+6x+9<0,

(x+3)^2<0,

нет решений; (x+3)^2≥0, x∈R

 

-x^2+6x-5≥0,

a=-1<0 - ветви параболы направлены вниз, часть параболы над осью Ох (≥0) расположена между корнями,

-x^2+6x-5=0,

x^2-6x+5=0,

по теореме Виета х_1=1, x_2=5,

1≤x≤5,

x∈[1;5]

 

x^2-4x+3≥0,

a=1>0 - ветви параболы направлены вверх,

x^2-4x+3=0,

x_1=1, x_2=3 - часть параболы над осью Ох расположена вне корней,

x≤1, x≥3,

x∈(-∞;1]U[3;+∞)

 

x^2-6x+8≤0,

a=1>0 - ветви параболы - вверх,

x^2-6x+8=0,

x_1=2, x_2=4 - часть параболы под осью Ох (≤0) расположена между корнями,

2≤x≤4,

x∈[2;4]

4,7(51 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ