Сумма: (a+b)+(a+c)+(c+b)=2*(a+b+c) четна,значит либо одно ,либо все 3 из них четно.Положим что все 3 четны,тогда: (a+b)*(b+c)*(a+c)=340 делиться на 8. Но 340 не делиться на 8,значит возможно ,что четно лишь одно из выражений. 340=2*2*5*17. (на простые множители)Поэтому тк только одно из слагаемых четно,то оно делиться на 4. Также раз a,b,c натуральный,то (a+b)>1,к ак и остальные два множителя.Тонда из всех этих условий очевидно что,можно взять произвольно в силу симметрии задачи, что (a+b)=4,(a+c)=5,b+c=17 Явно что a не равно b ,Тк (b+c) не равно (a+c). Тогда a=1 b=3,тогда c=5-1=4 ,но тогда c+b=7 не равно 17.Вывод такое невозможно
12x²+8x+1=0
D=64-48=16
x1=(-8-4)/24=-1/2
x2=(-8+4)/24=-1/6
+ _ +
(-1/2)(-1/6)
max min
ymax=y(-1/2)=-1+2-1+9=9
ymin=y(-1/6)=-1/27+2/9-1/3+9=(-1+6-9+243)/27=239/27=8 23/27