1) 25X^2 - 75X^2 - 17X + 6 = 0
25*(5)^2 - 75*25 - 85 + 6 = 625 - 1875 - 85 + 6 = 631 - 1960 = - 1329
ОТВЕТ: число 5 НЕ ЯВЛЯЕТСЯ КОРНЕМ ДАННОГО УРАВНЕНИЯ
2) 3*(2X-7) = 6X+1
6X - 21 = 6X + 1
6X - 6X = 22
0X = 22
ОТВЕТ: КОРНЕЙ НЕТ
4) (X-1)*(X+1) = 0
X1 = 1 X2 = - 1
(X+1)^2 = 2X+2
X^2 + 2X + 1 = 2X + 2
X^2 + 2X + 1 - 2X - 2 = 0
X^2 - 1 = 0
X^2 = 1 ---> X1 = V 1 = 1 (один корень)
ОТВЕТ: НЕ ЯВЛЯЕТСЯ
|X| - 1 = 0
|X| = 1
ОТВЕТ: ЯВЛЯЕТСЯ
X^2 = 1
ОТВЕТ: ЯВЛЯЕТСЯ
(X-1) = (X+1)
Корней нет : НЕ ЯВЛЯЕТСЯ
5) 2X+3A = 5X - 6B
5X - 2X = 3A + 6B
3X = 3*(A + 2B)
X = A + 2B
3) - 24X = - 5
AX = B
48X = 10
72X = 15
Объяснение:
lim(x→3) (x + (x²-9)/(x-3)) =
= lim(x→3) (x) + lim(x→3) (x²-9)/(x-3) =
= [3] + [0/0] =
= 3 + lim(x→3) (x²-9)/(x-3) =
= 3 + lim(x→3) (x-3)*(x+3)/(x-3) =
=3 + lim(x→3) (x+3)=
=3 + [6] =
=3 + 6 = 9
lim(x→3) (x + (x²-9)/(x-3)) =
= lim(x→3) (x) + lim(x→3) (x²-9)/(x-3) =
= [3] + [0/0] =
Воспользуемся правилом Лопиталя:
= 3 + lim(x→3) (x²-9)' / (x-3)' =
= 3 + lim(x→3) (2х+0)/(1+0)=
= 3 + lim(x→3) (2х)=
= 3 + [6]=
=3+6=9
lim(x→-2) ((4-х²)/(х-2) +х) =
=lim(x→-2) (4-х²)/(х-2) + lim(x→-2) (х)=
= [0/-4=0] + [-2]=
=0 + (-2) = -2
lim(x→-2) ((4-х²)/(х-2) +х) =
= lim(x→-2) (4-х²)/(х-2) + lim(x→-2) (х)=
= lim(x→-2) (2-х)*(2+х)/(х-2) + lim(x→-2) (х) =
= lim(x→-2) (-(2+х)) + lim(x→-2) (х) =
= [-(0)=0] + [-2]=
=0 + (-2) = -2