Х²+8х+18=х²+2*4х+4²+2=(х+4)²+2 Квадрат числа - это либо положительное число, либо ноль. То есть (х+4)²≥0. Если к положительному числу или нулю добавить 2, то получится положительное число. Значит, выражение принимает положительное значение при любом значении х. Наименьшее значение выражение примет в том случае, если значение выражения (х+4)² будет наименьшим, то есть 0, поскольку квадрат числа не может быть отрицательным. При этом значение выражения будет равно 0+2=2. Итак, найдем х, при котором выражение принимает наименьшее значение: (х+4)²=0 х+4=0 х=0-4 х=-4 - при таком значении х значение будет наименьшим. ответ: наименьшее значение выражения будет 2 при х=-4.
Решаем методом интервалов: 1) x^2 - 4x > 0 x(х - 4) > 0, отсюда х=0 или х=4,отмечаем на координатной прямой, расставляем знаки, получается + - +, выбираем больше, ответ (-бесконечность;0) U (4;+бесконечность) 2)x^2 + 4x < 0 x(х + 4) < 0, отсюда х=0 или х=-4,отмечаем на прямой,знаки будут + - +, выбираем меньше, ответ от (-4;0) 3)4x^2 - 64 < 0, делим все на 4, получаем x^2 - 16 < 0, расскладываем как разность квадратов, (х-4)(х+4) < 0,х=4 или х=-4, отмечаем на прямой ,расставляем знаки + - +,выбираем том, где минус, ответ (-4;4)
X ∈ (-4; 6,5)