М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ДЕСПАСИТТО58
ДЕСПАСИТТО58
06.12.2022 00:07 •  Алгебра

Пока я напишите ) разложите многочлен на множители ax+3x+4a+12 2mx-3m+4x-6 9m(в квадрате)-9mn-5m+5n z(в кубе)+21+3z+7z(в квадрате) z-3z(в квадрате)+z(в кубе)-3 99

👇
Ответ:
zirkonij556
zirkonij556
06.12.2022
( ax + 3x) + ( 4a + 12) = x(a + 3) + 4(a + 3) = (a + 3)(x + 4)
(2mx + 4x) - 3(m + 2) = 2x(m + 2) - 3( m + 2) = ( m + 2)(2x - 3)
(9m^2 - 9mn ) - 5(m - n) = 9m(m - n) - 5(m -n) = (m - n)(9m - 5)
(z^3 + 3z) + (7z^2 + 21) = z(z^2 + 3) + 7(z^2 + 3) = (z^2 + 3)(z + 7)
(z^3 - 3z^2) + (z - 3) = z^2(z - 3) + (z - 3) = (z - 3)(z^2 + 1)
4,7(87 оценок)
Ответ:
ольга1656
ольга1656
06.12.2022
1)(ax+3x)+(4a+12)=x(a+3)+4(a+3)=(x+4)(a+3)
2)(2mx-3m)+(4x-6)=m(2x-3)+2(2x-3)=(m+2)(2x-3)
3)(9m²-9mn)-(5m-5n)=9m(m-n)-5(m-n)=(9m-5)(m-n)
4)(z³+3z)+(21+7z²)=z(z²+3)+7(z²+3)=(z+7)(z²+3)
5)(z+z³)-(3z²+3)=z(z²+1)-3(z²+1)=(z²+1)(z-3)
4,4(54 оценок)
Открыть все ответы
Ответ:
hjhytu
hjhytu
06.12.2022

По определению, \left\{\underset{n\rightarrow\infty}{lim}x_n=L\right\}\Leftrightarrow\forall\varepsilon 0 \ \exists N: \ \forall n\geq N\rightarrow\left|x_n-L\right|

Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение \left\{\underset{n\rightarrow\infty}{lim}x_n=0\right\}\Leftrightarrow\forall\varepsilon 0 \ \exists N: \ \forall n\geq N\rightarrow\left|x_n\right|

2) x_n=\dfrac{a}{n}

|x_n|

А значит, если взять N=\left[\dfrac{|a|}{\varepsilon}\right] +1 (*), \forall\;n\geq N\to |x_n|. И правда: \dfrac{|a|}{\varepsilon}

(*) Очевидно, что для любого допустимого значения \varepsilon выражение \left[\dfrac{|a|}{\varepsilon}\right] +1 определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)

А это и означает, что предел данной последовательности равен 0

4)  x_n=\dfrac{2+(-1)^n}{n}

|x_n|

|2+(-1)^n|=\left\{\begin{array}{c}2-1=1,n=2k-1,k\in N \\2+1=3,n=2k,k\in N \end{array}\right. \Rightarrow |2+(-1)^n|\leq 3\; \forall n\in N

А значит, если взять N=\left[\dfrac{3}{\varepsilon}\right] +1 (**), \forall\;n\geq N\to |x_n|. И правда: \dfrac{|2+(-1)^n|}{\varepsilon}\leq\dfrac{3}{\varepsilon}< \left[\dfrac{3}{\varepsilon}\right] +1=N\leq n \Rightarrow \dfrac{|2+(-1)^n|}{\varepsilon}< n \Rightarrow |x_n|

(**) Очевидно, что для любого допустимого значения \varepsilon выражение \left[\dfrac{3}{\varepsilon}\right] +1 определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)

А это и означает, что предел данной последовательности равен 0

___________________________

2) a=1. Тогда x_1=\dfrac{1}{1}=1; x_2=\dfrac{1}{2}; x_3=\dfrac{1}{3}; x_4=\dfrac{1}{4}; x_5=\dfrac{1}{5}; x_6=\dfrac{1}{6}

4)

x_1=\dfrac{2+(-1)^1}{1}=1;\;x_2=\dfrac{2+(-1)^2}{2}=1\dfrac{1}{2};\;x_3=\dfrac{2+(-1)^3}{3}=\dfrac{1}{3};\;x_4=\dfrac{2+(-1)^4}{4}=\dfrac{3}{4};\;x_5=\dfrac{2+(-1)^5}{5}=\dfrac{1}{5};\;x_6=\dfrac{2+(-1)^6}{6}=\dfrac{1}{2}.

___________________________

Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x. 0\leq \{x\}


пример 2 и 4. Все теоремы и аксиомы, будьте добры, распишите. Действий, пусть и банальных, легких не
4,6(34 оценок)
Ответ:
Злата1616
Злата1616
06.12.2022
Тут нужно решать интервальным методом, показать здесь я это не могу. Но для начала нужно найти нули функции(значения х, при котором функция была бы равна нулю). Здесь нули ф.: 4;-3,5. Затем чертим ось ох, обозначаем эти точки и участки, где функция положительна или отрицательна. В итоге получаем, что функция <0 при х принадлежащем отрезку (-3,5;4) 2 решается точно так же, но тут для удобства нужно в 1 скобуе поменять местами числа, затем вынести за скобки -1 и умножить обе части неравенства на -1(при этом знак> меняется на знак <). Вот что получается (х-2)(х+1)<0. Нули функции: 2;-1. Дальше как я уже объяснял выше. ответ: при х принадлежащем отрезку (-1;2)
4,8(72 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ