М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
orixara1
orixara1
26.01.2022 20:50 •  Алгебра

Петровна икс 2 минус четыре икс минус 3 равно минус 6

👇
Ответ:
Артур3009
Артур3009
26.01.2022
2x-4x-3=-6
-2x=-6+3
-2x=3
x=3:(-2)
x=-1,5
4,5(55 оценок)
Открыть все ответы
Ответ:
Х2=0,36                х2-17=0                              х2+9=0 х=0,6                    х2=17                                х2=-9                               х=корень17                        х=3
4,6(4 оценок)
Ответ:
romandichii1
romandichii1
26.01.2022
3^1 = 3, \ 3^2 = 9, \ 3^3 = 27, \ 3^4 = 81

Чередуются цифры: 3, 9, 7, 1.
Если показатель степени с основанием 3 делится нацело на 4, то последняя цифра числа равна 1 (соответственно, если при делении на 4 степени числа даёт остаток 1, 2 или 3, то число оканчивается на 3, 9 или 7).

7^1 = 7, \ 7^2 = 49, \ 7^3 = 343, \ 7^4 = 2401

Чередуются цифры: 7, 9, 3, 1.
Если показатель степени с основанием 7 делится нацело на 4, то последняя цифра числа равна 1 (соответственно, если при делении на 4 степени числа даёт остаток 1, 2 или 3, то число оканчивается на 7, 9 или 3).

16 = 4*4 + 0, следовательно, числа 3^{16} и 7^{16} оканчиваются на 1, а их сумма (...1 + ...1) на 2.

Для таких рассуждений есть строгие формальные обозначения, но их далеко не всегда проходят в школе. Вот так выглядит более строгое решение:

3 \equiv 3 \ (\mod 10 \ ), \ 3^2 \equiv 9 \ (\mod 10 \ )\\\\
3^4 \equiv 81 \ (\mod 10 \ ), \ 81 \equiv 1 \ ( \mod 10 \ ) \Rightarrow 3^4 \equiv 1 \ (\mod 10 \ )\\\\
3^{16} \equiv 1 \ (\mod 10 \ )

7 \equiv 7 \ (\mod 10 \ ), \ 7^2 \equiv 49 \ (\mod 10 \ )\\\\
7^4 \equiv 2401 \ (\mod 10 \ ), \ 2401 \equiv 1 \ ( \mod 10 \ ) \Rightarrow 7^4 \equiv 1 \ (\mod 10 \ )\\\\
7^{16} \equiv 1 \ (\mod 10 \ )\\\\
3^{16} + 7^{16} \equiv 1 + 1 \ (\mod 10 \ )\\\\
3^{16} + 7^{16} \equiv 2 \ (\mod 10 \ )
4,4(100 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ