a)y=x+200 - уравнение прямой с k=1 Прямые имеют общую точку, если они не параллельны. За угол наклона прямой отвечает параметр k. Если k1 (у=kx) = k2 (y=x+200), то прямые параллельны и не имеют общих точек. Значит, k≠1.
б)(y-yA)/(yB-yA) = (x-xA)/(xB-xA) (y-1)/(-1-1) = (x+4)/(-1+4) (y-1)/(-2) = (x+4)/(3) y-1 = (-2x-8)/3 y = (-2x-8)/3 +1 y = -2x/3 -8/3 + 3/3 y = -2x/3 -5/3; k=-2/3 ; b=-5/3 Две прямые могут иметь только одну общую точку или не иметь их вообще. Значит, если прямые не параллельны, то имеют одну общую точку. Отсюда следует, что k≠-2/3
ставим ножку циркуля в вершину О прямого угла и проводим окружность произвольного радиуса. эта окружность пересекает стороны угла в двух точках А и В. Устанавливаем циркулем расстояние АВ и проводим окружность из точка А радиусом АВ, а затем строим точно такую же окружность из точки В. Эти две окружности пересекутся в точке С. Проведём луч ОС это и есть биссектриса прямого угла. Затем устанавливаем циркулем длину отрезка АВ и на биссектрисе откладываем от вершины это расстояние. Получим точку, которая лежит на биссектрисе угла и находится от вершины на расстоянии 4 см
5x-9=y
5xˇ2-9x=5x-9, 5xˇ2-14x+9=0, D=196-180=16,VD=V(16)=4
a)x1=1/10(14+4)=1/10.(18)=1,8,y1=5.1,8-9=9-9=0
x1=1,8,y1=0
b)x2=1/10(14-4)=1/10.(10)=1,y2=5.1-9=-4
x2=1, y2=-4