М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Lola664
Lola664
15.03.2022 10:33 •  Алгебра

Решите 13 . решение с линейных уравнений и шапки. 1. одно число в 2 раза больше другого, а их сумма равна 441. найдите эти числа. 2. сумма двух чисел равна 140, а разность 14. найдите эти числа. 3. сумма трех последовательных чисел равна 201. найдите эти числа.

👇
Ответ:
rauf2007
rauf2007
15.03.2022
Ййййййййййййййййййййййй
Решите 13 . решение с линейных уравнений и шапки. 1. одно число в 2 раза больше другого, а их сумма
4,8(85 оценок)
Открыть все ответы
Ответ:
Tatynm
Tatynm
15.03.2022
Чертим трапецию АВСД  проводи одну диагональ ВД
получается 2 равнобедренных треугольника АДВ и ВСД
пусть α угол при основании треугольника который примыкает к верхнему основанию ∠СВД
β  ∠ВАД тогда из условий трап получаем ∠ВАД+∠АВС=180°
β+(β+α)=α+2β=180°
из треуг ВСД ∠ВСД=180°-2α=∠АВС=α+β решим систему уравнений
α+2β=180°        α=180°-2β       α=180°-2β                   α=180°-2β       α=180°-144°
180°-2α=α+β     3α+β=180°      3*180°-6β+β=180°        5β=360°           β=72°
α=36°
α+β=36°+72°=108°
тогда углы трапеции равны 72°, 108°, 108°, 72°
4,8(59 оценок)
Ответ:
Пакмен007
Пакмен007
15.03.2022

Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.

1-ое свойство, которое понадобится

a+c \equiv b + d \ (mod \ m)

То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.

2-ое свойство, которое нам понадобится:

ac \equiv bd \ (mod \ m)

То есть довольно аналогичная вещь в произведении

На нашем примере все увидим

a = 5\cdot 2^{51}+21\cdot 32^{45}

Находим остатки по модулю 31

Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например, 16 \equiv (-1) \ (mod \ 17), но сейчас это не нужно), нам повезло, это 32

Учитываем, что 32 \equiv 1 \ (mod \ 31), получаем

5\cdot 2^{51} = 5\cdot 2^1 \cdot 2^{50}=10 \cdot 2^{10\cdot 5} = 10 \cdot (2^{5})^{10}= 10\cdot 32^{10} \equiv 10 \cdot 1^{10} \ (mod \ 31)

То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым

21\cdot 32^{45} \equiv 21 \cdot 1^{45}\ (mod \ 31) \equiv 21 \ (mod \ 31)

Остаток 21, чудесно. Выполняем последний шаг.

5\cdot 2^{51}+21\cdot 32^{45} \equiv 10+21 \ (mod \ 31) \equiv 31 \ (mod \ 31) \equiv 0 \ (mod \ 31)

То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.

4,6(78 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ