A² + b² + 1 ≥ ab + a + b a² + b² + 1 - ab - a - b ≥ 0 Чтобы доказать это неравенство, нужно преобразовать левую часть так, чтобы в ней стояла сумма квадратных двучленов:
0,5a² - a + 0,5 + 0,5b² - b + 0,5 + 0,5a² - ab + 0,5b² ≥ 0
(a - 1)² + (b - 1)² + (a - b)² ≥ 0 Таким образом, неравенство верно при любых a и b, т.к. сумма квадратов любых чисел есть число неотрицательное (большее или равное 0).
v=s´=3.4.tˇ3 -4.3.tˇ2=12tˇ3-12tˇ2
v(2)=12.2ˇ3 -12.2ˇ2=12.8-12.4=96-48=48
v(2)=48m/c