log(4) (x + 2) - log(4) (x + 5) < 1
log(a) b a>0 b>0 a≠1
log(a) b - log(a) c = log(a) b/c
x+2>0 x>-2
x+5>0 x>-5
ОДЗ x∈(-2 +∞)
log(4) (x + 2) - log(4) (x + 5) < 1
log(4) (x + 2) / (x + 5) < log(4) 4
основание больше 1 снимаем логарифмы без изменения знака
(x + 2) / (x + 5) < 4
(x + 2)/(x + 5) - 4 < 0
(x + 2 - 4x - 20)/(x + 5) < 0
(- 3x - 18)/(x + 5) < 0
- 3(x + 6)/(x + 5) < 0
(x+6)/(x+5) > 0
-------------- (-6) ++++++++++ (-5) -------------------
x∈(-∞ -6) U (-5 +∞)
пересекаем с ОДЗ
x∈(-2 +∞)
ответ: ('-')
_стройте быстрее ! |__/
('_') / | |
_|_ | y = v / \
| |
/ \ || x+2
/ { -1; 7 }
('_')_/ /
|__/
|
/ \
x1=0
x² -36 =0, (x -6)(x +6) =0
x -6 =0, x =6
x +6 =0, x= -6
отв. x=0, x=6, x= -6
2. x(x² -10x +25) =0
x1 =0
x² -10x +25 =0
(x -5)² =0, (x -5)(x -5) =0
x -5 =0
x =5
отв. x =0, x =5