1) Боря берет конфеты по арифметической прогрессии: 1, 3, 5, ... a1(1) = 1; d1 = 2 Миша - тоже по арифметической прогрессии a2(1) = 2; d2 = 2 Всего Боря взял S1(n) = (2a1 + d(n-1))*n/2 = (2 + 2(n-1))*n/2 = (1 + n - 1)*n = n^2 = 60 7 < n < 8 Значит, n = 7, предпоследний раз Боря взял a1(7) = 1 + 2*6 = 13. И у Бори получилось S1(7) = 7^2 = 49 конфет. Но мы знаем, что всего он взял 60 конфет. Значит, в последний раз 11. Миша последний раз взял 14. Это тоже 7-ой раз. Всего Миша взял S2(7) = (2*2 + 2*6)*7/2 = 2*8*7/2 = 56 Всего конфет было 60 + 56 = 116
2) 231 = 3*7*11 На каждом этаже квартир больше 2, но меньше 7, то есть 3. Допустим, в доме 7 этажей. Тогда в одном подъезде 3*7 = 21 квартира. Квартира номер 42 - последняя во 2 подъезде. Квартир с номерами больше 42 во 2 подъезде нет. Значит, в доме 11 этажей. Тогда в одном подъезде 3*11 = 33 квартиры. Квартира номер 42 - последняя на 3 этаже.
Пусть х литров молока в первом бидоне, а у литров - во втором. х+у=75 литров молока. Если из первого вылить 1/5 часть молока останется х-1/5x=5x/5-x/5=4/5x=0,8х литров, а во второй долить 2 литра, получим у+2 литров молока, что в полтора раза больше, чем в первом: у+2=1,5*0,8х=1,2х Составим и решим систему уравнений: х+у=75 у+2=1,2х
Выразим значение у в первом уравнении: у=75-х
Подставим его во второе уравнение (метод подстановки): у+2=1,2х 75-х+2=1,2х 77-х-1,2х=0 -2,2х=-77 2,2х=77 х=77:2,2 х=35 (литров молока) - в первом бидоне Тогда во втором у=75-х=75-35=40 литров. ответ: в первом бидоне было 35 литров молока, а во втором 70 литров молока.