а) - х^2 + 4 = (х - 2)^2 -x^2+4-x^2+4=0 -2x^2+8=0 -(x^2)+4=0 -(x^2)=-4 x(1)=2 x(2)=-2 - Определяешь точки пересечения с осью 0Х, чтобы составить рациональную таблицу для построения графики f(x)=-x^2+4 ответ(записываешь после построения графиков) х(1)=-2 х(2)=2
б) х + 1 = (х - 1)^2 x+1-x^2+1=0 f(x)=-x^2+x+2 D=1-4*(-1)*2=9 x=(-1(+-)3)/-2 =2 =-1 Тоже самое - находить рациональные точки для построения таблицы, чтобы не писать огромную таблицу. Только эти вычисления для их проводи ываешь только до f(x)=на черновике, т.к. задано - решить графически.Записываешь только до f(x)=..... х(1)=-1 х(2)=2 Графики приложениы
Такие уравнения решаются по одному приёму: надо снять знак модуля. При этом учитывать, что |x| = x при х ≥ 0 |x| = -x при х <0 Придётся определять какое число стоит под знаком модуля, чтобы потом этот самый знак снять. каждое подмодульное выражение = 0 при х = -2, 3, 2 Поставим эти числа на координатной прямой -∞ -2 2 3 +∞ Получили 4 промежутка. на каждом отдельно будет уравнение иметь свой вид а) (-∞; -2) -(х+2) +(х-3) +(х-2) = 3 -х-2+х-3+х-2 = 3 х = 10 ( в указанный промежуток не входит) б)[-2; 2) х+2 +х -3 +х-2 = 3 3х = 6 х = 2 ( в указанный промежуток не входит) в) [2; 3) х +2 +х -3 -х -2 = 3 х =6 ( в указанный промежуток не входит) г)[3; +∞) х +2 -х+3 -х+2 = 3 -х = -4 х = 4 ( в указанный промежуток входит) ответ: 4