Данное двойное неравенство равносильно системе двух квадратных неравенств:

Первое неравенство
.
Заметим, что в левой части скрывается квадрат разности (формула
):
.
Неравенство принимает следующий вид:
.
Так как квадрат числа всегда неотрицательный, то нам не подходит всего лишь один случай:
и
.
Значит, первой неравенство эквивалентно тому, что
.
Второе неравенство
.
Вс уравнение
имеет по теореме Виета (утверждающей, что
и
) корни
и
.
Из этого следует разложение левой части на множители:
.
Метод интервалов подсказывает решение
.
+ + + - - - + + +
_________
_________
_________
\\\\\\\\\\\\\\\\\\\\\
Значит, второе неравенство равносильно тому, что
.
Имеем значительно более простую систему неравенств:

Вполне понятно, что ее решением является
(как пересечения двух промежутков).
Или же
.
Задача решена!
ответ:
Обозначим cлагаемые за Х,У,Z
(X+Y+Z)/3>=1
Согласно неравенству о среднем арифметическом и среднем геометрическом достаточно доказать :
ХУZ>=1
Вернемся к исходным обозначениям
8abc>=(a+b)(b+c)(a+c)
Снова согласно неравенству о среднем арифметическом и среднем геометрическом видим
a+b>=2sqrt(ab) b+c>=2sqrt(сb) (a+c)>=2sqrt(ac)
поэтому можим заменить сомножители справа на произведение
2sqrt(ab)*2sqrt(aс)*2sqrt(сb)=8abc, что и доказывает неравенство.
Равенство достигается только при а=с=b