Дабы упростить задачу, сделаем так, чтобы график квадратичной функции касался прямой y = 3 в своей вершине. Вершина параболы y = x² - это точка O(0; 0). При параллельном переносе на 6 ед. влево и 3 ед. вверх вершиной параболы будет точка O1(6; 3). Чтобы из графика функции y = x² получить график функции y = (x - 6)² + 3, нужно y = x² перетащить на 6 ед. влево и на 3 ед. вверх, что мы и сделаем. В конечном итоге получим график квадратичной функции, которая касается в своей вершине прямой y = 3 в точке с абсциссой 6.
Дабы упростить задачу, сделаем так, чтобы график квадратичной функции касался прямой y = 3 в своей вершине. Вершина параболы y = x² - это точка O(0; 0). При параллельном переносе на 6 ед. влево и 3 ед. вверх вершиной параболы будет точка O1(6; 3). Чтобы из графика функции y = x² получить график функции y = (x - 6)² + 3, нужно y = x² перетащить на 6 ед. влево и на 3 ед. вверх, что мы и сделаем. В конечном итоге получим график квадратичной функции, которая касается в своей вершине прямой y = 3 в точке с абсциссой 6.
2х+3х+7х=180
12х=180
х=15
2х=2*15=30 (меньший угол)
По теореме о соотношении между углами и сторонами треугольника против стороны треугольника, равной 6 см, лежит угол, равный 30 градусам
6/sin 30 градусов = 2R, R=6/(2*sin 30 градусов)=6/(2*1/2)=6/1=6 (см)