0,15 (x - 4) = 9,9 - 0,3 (x - 1)
0,15x - 0,6 = 9,9 - 0,3x + 0,3
0,15x + 0,3x = 9,9 + 0,3 + 0,6
0,45x = 10,8
x = 10,8 : 0,45 = 1080 : 45 = 24
Проверка :
0,15 (24 - 4) = 9,9 - 0,3 (24 - 1)
0,15 · 20 = 9,9 - 0,3 · 23
3 = 9,9 - 6,9 = 3
-----------------------------------------------
1,6 (a - 4) - 0,6 = 3 (0,4a - 7)
1,6a - 6,4 - 0,6 = 1,2a - 21
1,6a - 1,2a = 6,4 + 0,6 - 21
0,4a = -14
a = -14 : 0,4 = - 140 : 4 = -35
Проверка :
1,6 (- 35 - 4) - 0,6 = 3 (0,4 · (-35) - 7)
1,6 · (-39) - 0,6 = 3 · (-14 - 7)
-62,4 - 0,6 = 3 · (-21)
-63 = -63
Дано уравнение cos a/2 + sin a/2 = -0,2 .
Пусть а/2 = х, применим формулу cos x = √(1 - sin²x).
Получаем √(1 - sin²x) + sin x = -0,2.
Перенесём sin х вправо и возведём обе части в квадрат.
1 - sin²x = (-0,2 - sin x)² = 0,04 + 0,4sin x + sin²x.
2sin²x + 0,4sin x - 0,96 = 0. Пусть sin x = t.
Ищем дискриминант:
D=0.4^2-4*2*(-0.96)=0.16-4*2*(-0.96)=0.16-8*(-0.96)=0.16-(-8*0.96)=0.16-(-7.68)=0.16+7.68=7.84;
Дискриминант больше 0, уравнение имеет 2 корня:
t_1=(2root7.84-0.4)/(2*2)=(2.8-0.4)/(2*2)=2.4/(2*2)=2.4/4=0.6;
t_2=(-2root7.84-0.4)/(2*2)=(-2.8-0.4)/(2*2)=-3.2/(2*2)=-3.2/4=-0.8.
Отсюда видит, что есть 2 решения переменной (а/2) = х с учётом формул cos x = √(1 - sin²x) и условия cos (а/2) + sin (a/2)= -0,2.)
1) sin (a/2) = 0,6, cos (a/2) = -0,8,
2) sin (a/2) = -0,8, cos (a/2) = 0,6.
Для любого варианта синус двойного угла определится так:
sin a = 2sin(a/2)*cos(a/2) = 2*(-0,8)*0,6 = -0,96.
1)1
2)2cosx
3)1/cosx
4)cosx+sinx
ответ 2