ответ: x = 14.
Объяснение: одно дело "выразить икс" и совсем другое - решить уравнение)) можно найти икс, постепенно выполняя обратные действия (не раскрывая скобок):
1) делимое = произведению делителя и частного: 1.2*(12_2/3) = (6/5)*(38/3) = 76/5
2) слагаемое = разности суммы и другого слагаемого: (76/5)-6.2 = (76/5)-(31/5) = 45/5 = 9
3) чтобы найти делитель (это самая внутренняя скобка), нужно делимое разделить на частное:
(3_9/16):9 = (57/16)*(1/9) = (19/16)*(1/3) = 19/48
4) уменьшаемое = разность + вычитаемое: (19/48)+(7/24) = (19+14)/48 = 33/48 = 11/16
5) 2.75:(11/16) = (11/4)*(16/11) = 4
получили: х:(2/7) - 45 = 4
x:(2/7) = 45+4=49
x = 49*(2/7) = 14
и всегда полезно делать проверку:
14:(2/7) = 14*7/2 = 7*7 = 49
49-45 = 4
(2.75)/4 = (11/4)*(1/4) = 11/16
(11/16)-(7/24) = (33-14)/48 = 19/48
(3_9/16):(19/48) = (57/16)*(48/19) = 3*3 = 9
9+6.2 = 15.2
(15.2):(12_2/3) = (76/5)*(3/38) = 6/5 = 12/10 = 1.2
а выразить икс гораздо сложнее...
Объяснение: ( ^ -знак степени x^2 -это х в квадрате)
5) x^2 -3x-5=7-2x, u 7-2x>0, x^2-x-12=0, u x<3,5, корни уравнения
x=-3, x=4(не подходит), отв. х=-3
6) Пусть log0,2 x =t, t^2+t-6=0, корни t=-3 u t=2,
тогда, log0,2 x=-3, x=(1/5)^-3=5^3=125 u log0,2 x=2, x=0,2^2=0,04
ответ: 125; 0,04
7) система 2x-3<= x^2 -6, 2x-3>0, (основание < 1, знак поменяли)
x^2-6-2x+3>=0, x^2 -2x -3>=0, корни -1 и 3 и x>1,5, метод интервалов
+[-1] - [3] + , ответ: [3; +Беск.)
8) lg^2 x +3lg x-4<0 , t=lgx, t^2 +3t -4<0, t= -4, t=1, метод интервалов,
+( -4) - (1)+ t -4<t<1, обратная замена,
-4 <lgx <1, lg10^ (-4) <lgx <lg10, 10^(-4) <x <10, ответ (0,0001;10)
Центральный угол правильного многоугольника - это угол между двумя лучами, проведенными из центра многоугольника к двум его соседним вершинам. Центр правильного многоугольника совпадает с центром описанной окружности, значит, центральный угол, образованный двумя радиусами, проведенными к двум соседним вершинам, равен центральному углу многоугольника.
У правильного n-угольника n равных сторон, значит, будет n равных центральных углов.
Для двенадцатиугольника
360° : 12 = 30°
Внешний угол правильного многоугольника равен центральному углу.