1. Упростить выражение:1-Sin (в квадрате) альфа - Cos (в квадрате) альфа 2. Зная, что 0 < альфа < пи/2найти: Sin альфа, если Cos альфа = 1/4 Ctg альфа, если Sin альфа = 12/13 1) 1-Sin (в квадрате) альфа - Cos (в квадрате) альфа= Sin (в квадрате) альфа +Cos (в квадрате) альфа - Sin (в квадрате) альфа - Cos (в квадрате) альфа=02) 0 < альфа < пи/2 - 1четверть Sin (в квадрате) альфа +Cos (в квадрате)альфа =1Sin (в квадрате) альфа = 1- 1/16 = 15/16Sin альфа = + или - корень из 15/16т.к. синус в 1 четрерти положительный,то - корень 15/16 не удовлетворяет.ответ синус альфа =(корень 15)/4 2) Sin (в квадрате) альфа +Cos (в квадрате)альфа=1косинус(в квадрате) = 1-144/169косинус альфа = +или - 5/13т.к. косинус в 1 четвернти положительный то =5/13 не удовлетворяет.Ctg альфа = 5*13/13*12 = 5/12ответ : Ctg альфа= 5/12
Дано уравнение: x=−7x+40x−10 Домножим обе части ур-ния на знаменатели: -10 + x получим: x(x−10)=1x−10(−7x+40)(x−10) x(x−10)=−7x+40 Перенесём правую часть уравнения в левую часть уравнения со знаком минус.
Уравнение превратится из x(x−10)=−7x+40 в x(x−10)+7x−40=0Раскроем выражение в уравнении x(x−10)+7x−40=0Получаем квадратное уравнение x2−3x−40=0 Это уравнение вида a*x^2 + b*x + c. Квадратное уравнение можно решить с дискриминанта. Корни квадратного уравнения: x1=D‾‾√−b2a x2=−D‾‾√−b2a где D = b^2 - 4*a*c - это дискриминант. Т.к. a=1 b=−3 c=−40 , то D = b^2 - 4 * a * c = (-3)^2 - 4 * (1) * (-40) = 169 Т.к. D > 0, то уравнение имеет два корня. x1 = (-b + sqrt(D)) / (2*a) x2 = (-b - sqrt(D)) / (2*a) или x1=8 x2=−5
sin2x=-1
2x=-pi/2+2pi*n
x=-pi/4+pi*n