Выпишем последовательность чисел, которые делятся на 3: 3, 6, 9, ..., 150 - это арифметическая прогрессия, где: => n=50 шт. - это сумма всех натуральных чисел, не превосходящих 150, делящихся на 3.
Из последовательности нужно исключить числа, делящиеся на 4: 4, 8, 12,...,148 - арифметическая прогрессия, где: => k=37 шт. - это сумма всех натуральных чисел, не превосходящих 150, делящихся на 4.
Сумма натуральных чисел, не превосходящих 150, делящихся на 3 и не делящихся на 4, равна: S=3825-2812=1013
Выпишем последовательность чисел, которые делятся на 3: 3, 6, 9, ..., 150 - это арифметическая прогрессия, где: => n=50 шт. - это сумма всех натуральных чисел, не превосходящих 150, делящихся на 3.
Из последовательности нужно исключить числа, делящиеся на 4: 4, 8, 12,...,148 - арифметическая прогрессия, где: => k=37 шт. - это сумма всех натуральных чисел, не превосходящих 150, делящихся на 4.
Сумма натуральных чисел, не превосходящих 150, делящихся на 3 и не делящихся на 4, равна: S=3825-2812=1013
(x-4-5x)(x-4+5x)=(-4x-4)(6x-4)=-4(x+1)*2(3x-2)=8(x+1)(2-3x)
2
(a-b)(a+b)-4(b+a)=(a+b)(a-b-4)