Вершины квадрата: В(-2;-4), С(5;-4), D(5;3)
Объяснение:
А(-2;3)
а=7
1) Известно, что сторона квадрата AB параллельна оси ординат, значит, абсцисса точки В равна -2.
2) Известно также, что начало координат лежит внутри квадрата, значит, точка В лежит ниже оси Ох на расстоянии равном 7-3=4. Следовательно, можно записать координаты точки В(-2;-4).
3) Находим координаты точки С. Её ордината совпадает с ординатой точки В и равна -4. Т.к. АВСД - квадрат, то точка С лежит на прямой, параллельной оси Ох, на расстоянии равном 7-2=5 от оси Оу. Следовательно, её координаты С(5;-4).
4) Осталось записать координаты точки D. Её абсцисса совпадает с абсциссой точки С, а ордината совпадает с ординатой точки А. Значит, D(5;3)
Число размещений из n элементов по 4 равно: A⁴n = n!/(n-4)!
Число размещений из n-2 элементов по 3 равно: A³n-2 = (n-2)!/(n-2 -3)! = (n-2)!/(n-5)!
A⁴n в 14 раз больше A ³n-2 => A⁴n : A³n-2 = 14
n!/(n-4)! : (n-2)!/(n-5)! = 14
n! * (n-5)! /(n-2)! *(n-4)! = 14
n! * 1*2*3*...*(n-5) / (n-2)! *1*2*3*...*(n-5)*(n-4) = 14 (сокращаем дробь на 1*2*3*...*(n-5) )
n! / (n-2)! *(n-4) = 14
1*2*3*..*(n-2)*(n-1)*n / 1*2*3*..*(n-2) *(n-4) = 14 (сокращаем дробь на 1*2*3*...*(n-2) )
(n-1)*n / (n-4) = 14 | *(n-4)
(n-1)*n = 14(n-4)
n² - n = 14 n - 56
n² - n - 14 n + 56 = 0
n² - 15 n + 56 = 0
D = 225 - 4*56 = 225 - 224 = 1
n₁= (15 + 1)/2 или n₂= (15 - 1)/2
n₁= 8 или n₂= 7
ответ: 7 ; 8.
6x-2x-2y+3y=5
4x+y=5
4x=5-y
x=5-y/4
5-x+2y=4y+16
-x+2y-4y=16-5
-x-2y=11
-(5-y/4)-2y=11
(-5+y/4)-2y=11
-5+y-8y=44
-7y=44+5
-7y=49
y=-7
x=5-(-7)/4=12/4=3
ответ: (3;-7)