Есть правило нахождении предела отношения дробно-рациональной функции при х---> к бескон.Если многочлен в числителе имеет степень, равную степени многочлена в знаменателе, то предел равен отношению коэффициентов перед СТАРШИМИ степенями.Доказывается это с деления числителя и знаменателя на старшую степень и учёта того, что константа, делённая на бесконечно большую велмчину равна 0 (беск.малой величине). В 1 примере старшая степень числителя первая и коэффициент перед ней равен 1.В знаменателе старш.степень первая и старший коэффю=1.Поэтому предел равен 1:1=1. Если решать пример с деления на старш.степень, то получим:
Конечно, удобнее пользоваться готовым правилом.
Если степень многочлена в числителе меньше степени многочлена в знаменателе, то предел будет равен 0. Если степень многочлена в числ. больше степени мног. в знаменателе, то предел равен бесконечности. Например:
1) Простое уравнение y - скорость грузовика (x + 20) - скорость авто тогда: (x+20)* 5 = x*7 5x + 100 = 7x 100 = 7x- 5x 2x = 100 x = 50 - скорость грузовика Расстояние равно 50 * 7 = 350
2) x - скорость течения, тогда : (4+x) скорость лодки по течению (4-x ) скорость лодки против течения (4+x)*2,4 = 1,2 + (4-x)*4.8 9.6 + 2.4x = 1.2 + 19.2 - 4.8x 2.4x+4.8x = 19.2+1.2-9.6 7.2x= 10.8 x = 1.5 км/ч
Рассамтриваешь отрезки:
1)x<-1/2, тогда первый модуль раскроется как -2х-1, второй - как -х;
f(x)=1/(-3x-1);
2)-1/2<=x<0; первый модкль раскроется как 2х+1, второй - как -х;
f(x)=1/(x+1);
3)0<=х, первый модкль раскроется как 2х+1, второй - как х;
f(x)=1/(3x+1);
На соответствующих отрезках чертишь функцию на этом отрезке.