М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
dasha34presnova
dasha34presnova
01.06.2023 00:59 •  Алгебра

1. определите имеет ли корень уравнение и если имеет то сколько? 3x²-11+7=0 2. решите уравнения: 4x²-20=0 2x²-7+6=0 2x+6x²=0 x²-x=2x-3 от этого зависит останусь на второй год или нет

👇
Ответ:
melanieе
melanieе
01.06.2023
3×^2-11+7=0
Д=в^2-4ас=121-84=37
ответ:т.к. дискриминант положительный и больше 0 то корней будет 2
2) 4×^2-20=0
4×^2=20
×^2=5
×=+-v5

2×^2-7+6=0
2×^2-1=0
2×^2=1
×^2=0,5
×=+-v0,5

2×+6×^2=0
6×^2+2×=0
×(6×+2)=0
×=0 6×+2=0
6×=-2
×=-1/3

×^2-×=2×-3
×^2-×-2×+3=0
×^2-3×+3=0
D=9-12=-3
т.к. дискриминант меньше 0 то корней нет
4,4(4 оценок)
Ответ:
mila2086
mila2086
01.06.2023
1-
D=11^2-4*3*7=121-84=37
корней нет.
4,5(6 оценок)
Открыть все ответы
Ответ:
prvvk
prvvk
01.06.2023

Чтобы уравнение имело  действительное решение   ,  достаточно чтобы дискриминант был неотрицательным.

D/4 = (a^3-b^3)^2 -(a^2-b^2)*(a^4-b^4)>=0

То  есть ,  необходимо доказать ,  что  при любых a и b справедливо строгое неравенство :

(a^3-b^3)^2>=(a^2-b^2)*(a^4-b^4)

 (a-b)^2*(a^2+ab+b^2)^2>=(a-b)^2* (a+b)^2 * (a^2+b^2)

Заметим ,  что  когда  a=b  , получаем  что  0=0 , то есть условие выполнено.  И  в этом случае уравнение имеет бесконечно много решений.

Теперь,  поскольку  мы разобрали этот случай и  (a-b)^2>=0 , то для случая  a≠b , можно поделить обе части неравентсва на (a-b)^2  не меняя знак неравенства  :

(a^2+ab+b^2)^2>=(a+b)^2*(a^2+b^2)

( a^2+ab+b^2)^2 >= (a^2+2ab+b^2)*(a^2+b^2)

Теперь сделаем слудующий прием , поскольку  (a^2+b^2)^2>0   при a≠b≠0

То можно поделить на это выражение обе части неравенства не меняя его знак :

(  1+ ab/(a^2+b^2)  )^2>= 1+ 2ab/(a^2+b^2)

Тогда можно сделать замену:

ab/(a^2+b^2)=t

(1+t)^2>=1+2t

t^2+2t+1>=1+2t

t^2>=0 (верно)

Таким образом :

(a^3-b^3)^2>=(a^2-b^2)*(a^4-b^4) , то  есть  D>=0.

Вывод :  уравнение  имеет  действительное решение при  любых действительных  а и b.

Что и требовалось доказать.

4,4(14 оценок)
Ответ:
Mariaxmxm
Mariaxmxm
01.06.2023
Пусть на первой полке было х книг, тогда на второй 195-х.
С первой полки убрали 35 %, значит там стало х - 0,35х книг, а на второй полке стало 195-х+0,35х
(х-0,35х)*2=195-х+0,35х
1,3х+0,65х=195
1,95х=195
х=100 книг на первой полке
195-100=95 книг на второй полке

Пусть на первой полке х книг, на второй у. Тогда
х+у = 195
(х-0,35х)*2=у+0,35х

х=195-у
1,3х=у+0,35х

х=195-у
1,3*(195-у)=у+0,35(195-у)

х=195-у
253,5-1,3у=у+68,25-0,35у
-1,3у-у+0,35у=68,25-253,5
-1,95у=-182,25
у=95 книг - на второй полке
х=195-у
х=195-95=100 книг на первой полке
4,4(49 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ