Tgx + ctgx = 5 sinx/cosx + cosx/sinx = 5 Умножим обе части уравнения на sinx*cosx. (sinx)^2 + (cosx)^2 = 5sinx*cosx Так, как (sinx)^2 + (cosx)^2 = 1, 5sinx*cosx = 1 sinx*cosx = 1/5 Теперь запишем (sinx + cosx)^2 = (sinx)^2 + (cosx)^2 + 2sinx*cosx = 1 + 2/5 = 7/5, откуда sinx + cosx = √(7/5) sinx + cosx = -√(7/5) Решений два, потому что период синуса и косинуса в два раза больше, чем у тангенса и котангенса, что означает, что на одно значение суммы тангенса и котангенса будет два значения суммы синуса и косинуса
у=х-2
Имеем х²+ (х-2)²=20. х²+х²-4х+4-20=0 2х²-4х-16=0
х²-2х-8=0,отсюда x[1]=4, x[2]=-2,тогда у[1] =4-2=2, у[2]=-4.
ответ:(4;2),(-2;-4)