Х²+8х+18=х²+2*4х+4²+2=(х+4)²+2 Квадрат числа - это либо положительное число, либо ноль. То есть (х+4)²≥0. Если к положительному числу или нулю добавить 2, то получится положительное число. Значит, выражение принимает положительное значение при любом значении х. Наименьшее значение выражение примет в том случае, если значение выражения (х+4)² будет наименьшим, то есть 0, поскольку квадрат числа не может быть отрицательным. При этом значение выражения будет равно 0+2=2. Итак, найдем х, при котором выражение принимает наименьшее значение: (х+4)²=0 х+4=0 х=0-4 х=-4 - при таком значении х значение будет наименьшим. ответ: наименьшее значение выражения будет 2 при х=-4.
у= - х/ (х² + 169)
Находим первую производную функции:
y ` = {2x²)/(x² + 169)² - 1/(x² + 169)
или
y ` = (x² - 169)/(x² + 169)²
Приравниваем ее к нулю:
(x² - 169)/(x² + 169)² = 0
x² - 169 = 0
x² = 169
x₁ = - 13
x₂ = 13
Вычисляем значения функции
f(-13) = 1/26
f(13) = - 1/26
ответ: fmin = - 1/26 ; fmax = 1/26
Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную:
y `` = (- 8x³)/(x² + 169)³ + (6x)/(x² + 169)²
или
y `` = [2x*(- x² + 507)] / (x² + 169)³
Вычисляем:
y ``(- 13) = - 1/4394 < 0
значит эта точка - максимума функции.
y ``(13) = 1/4394 > 0
значит эта точка - минимума функции.