расстояние 96 км; скорость течения --- 5 км/час; время против течения --- ?,час, но на 10>, чем по течению; собств. скорость лодки ? км/час Решение. Х км/час скорость лодки в неподвижной воде ( собственная скорость ); (Х - 5) км/час скорость против течения; 96/(Х-5) час время, затраченное против течения; (Х + 5) км/час скорость по течению; 96/(Х+5) час время, затраченное по течению; 96/(Х-5) - 96/(Х+5) = 10 (час) разница во времени по условию; приведем дроби к общему знаменателю (Х+5)(Х-5) = (Х^2 - 25) и умножим на него все члены уравнения: 96(Х+5) - 96*(Х-5) = 10*(X^2 - 25); 96Х + 96*5 - 96Х + 96*5 = 10X^2 - 250; 10Х^2 = 1210; X^2 = 121; Х = 11(км/час). Отрицательную скорость ( второй корень уравнения) а расчет не принимаем! ответ : Скорость лодки в неподвижной воде 11 км/час. Проверка: 96:(11-6) - 96:(11+6) = 10; 10 = 10
|х+14| - 7* |1 - х| > х или что тоже самое |х+14| - 7* |x -1| > х разобьем на три интервала 1) х+14<0 и x-1<0 x<-14 и x<1 объединяя оба эти условия получим x<-14 на этом интервале наше неравенство имеет вид -(х+14) + 7* (x -1) > х -x-14+7x-7>x 6x-21>x 5x>21 x>21/5 но это противоречит условию x<-14. На этом интервале решения нет. 2) х+14≥0 и x-1<0 x≥-14 и x<1 объединяя оба эти условия получим -14≤x<1 на этом интервале наше неравенство имеет вид (х+14) + 7* (x -1) > х x+14+7x-7>x 8x+7>x 7x>-7 x>-1 объединяя это условие с -14≤x<1 получим -1 <x<1
3) х+14≥0 и x-1≥0 x≥-14 и x≥1 объединяя оба эти условия получим x≥1 на этом интервале наше неравенство имеет вид (х+14) - 7* (x -1) > х x+14-7x+7>x -6x+21>x 21>7x 3>x объединяя это условие с x≥1 получим 1≤x<3 теперь последнее действие: объединим решения 2) и 3) -1 <x<3 или x∈(-1;3)
y=log₃ (4x² - x - 14)
4x² - x - 14 > 0
4x² - x - 14 = 0
D = 1 + 4*4*14 = 225
x₁ = (1 - 15)/8 = - 14/8 = - 7/4
x₂ = (1 + 15)/8 = 2
x ∈ (- ∞; - 1(3/4))∪(2; + ∞)