Напомним, что любая функция принимает наименьшее или наибольшее значение тогда, когда ее производная равна нулю или не существует. Найдем производную y´(x) и приравняем ее к нулю. y´(x)=(8x2-x3+13)´=(8x2)´- (x3)´ + 13´ = 16x - 3x2 - существует при любых x. 16x-3x2=0 x(16-3x)=0 x1=0, x2=16/3=5 целых 1/3 - в этих точках функция y(x) принимает наименьшее или наибольшее значение. Когда производная меньше нуля, функция убывает. Когда производная больше нуля, функция возрастает. Посмотрим на знаки производной. При x<0 y´(x)<0. При 00. Значит, до x=0 функция y(x) убывает, а после x=0 - возрастает. Поэтому в точке x=0 функция будет принимать наименьшее значение на отрезке [-5; 5]. Найдем это наименьшее значение, подставив в y(x) вместо x ноль. Получаем: y(0) = 8*02 - 03+ 13=13, это и будет ответ.
1) a=2 b=6 c=4
d=6^2-4*2*4=36-32=4, D>0, 2 корня
x1,2=6*+/- корень из 4
2*2
x1,2=6* +/- 2
4
x1=6+2 1
___ = 8/4= __
4 2
x2=6-2
___ = 4/4=1
4
ответ: 1/2;1.