 
                                                 
                                                Данное двойное неравенство равносильно системе двух квадратных неравенств:

Первое неравенство  .
.
Заметим, что в левой части скрывается квадрат разности (формула  ):
):  .
.
Неравенство принимает следующий вид:  .
.
Так как квадрат числа всегда неотрицательный, то нам не подходит всего лишь один случай:  и
 и  .
.
Значит, первой неравенство эквивалентно тому, что  .
.
Второе неравенство  .
.
Вс уравнение  имеет по теореме Виета (утверждающей, что
 имеет по теореме Виета (утверждающей, что  и
 и  ) корни
) корни  и
 и  .
.
Из этого следует разложение левой части на множители:  .
.
Метод интервалов подсказывает решение ![x \in [ 1; 3 ]](/tpl/images/1227/3957/60bcc.png) .
.
+ + + - - - + + +
_________![[ \; 1 \; ]](/tpl/images/1227/3957/d73a9.png) _________
_________![[ \; 3 \; ]](/tpl/images/1227/3957/abab5.png) _________
_________
\\\\\\\\\\\\\\\\\\\\\
Значит, второе неравенство равносильно тому, что  .
.
Имеем значительно более простую систему неравенств:

Вполне понятно, что ее решением является  (как пересечения двух промежутков).
 (как пересечения двух промежутков).
Или же  .
.
Задача решена!
ответ:
 
                                                Исходная матрица имеет вид:
1 2 0
2 4 0
0 0 0
Объяснение:
Составляем систему для определения координат собственных векторов:
(1 - λ)x1 + 2x2 + 0x3 = 0
2x1 + (4 - λ)x2 + 0x3 = 0
0x1 + 0x2 + (0 - λ)x3 = 0
Составляем характеристическое уравнение и решаем его.
1 - λ 2 0
2 4 - λ 0
0 0 0 - λ
Для этого находим определитель матрицы и приравниваем полученное выражение к нулю.
(1 - λ) • ((4 - λ) • (0 - λ)-0 • 0)-2 • (2 • (0 - λ)-0 • 0)+0 • (2 • 0-(4 - λ) • 0) = 0
После преобразований, получаем:
5*λ2-λ3 = 0
λ1 = 0
Подставляя λ1 = 0 в систему, имеем:
1 - 0 2 0
2 4 - 0 0
0 0 0 - 0
или
1 2 0
2 4 0
0 0 0
 
                                                 
                                                 
                                                 
                                                
Пусть х км/ ч скорость второго авто, тогда х+10 (км/ч) скорость первого авто. Расстояние каждый из них в 560 км, по времени составляем уравнение:
560 / х - 560/ (х+10) = 1
Приводим к общему знаменателю х(х+10) и отбрасываем его заметив, что х не=0 и х не=-10
Получаем:
560(х+10)-560х=х(х+10)
560х+5600-560х=х^2+10х
х^2+10х-5600=0
Д= 100+4*5600=22500 , 2 корня
х(1) = (-10+150)/2= 70 х(2)=(-10-150)/2 =-80 не м.б скоростью( не подходит под условие задачи)
70+10=80 км/ч скорость первого авто
ответ: 70 и 80 км/ч скорости автомобилей.