1) cosx≥0 - так как под корнем четной степени. sinx≥0, так как иначе Значит, решения могут быть только в I квадранте (включая границы). 2) Очевидно, что x1=2πn и x2=π/2+2πn являются решениями данного уравнения. В первом случае sinx=0, cosx=1, во втором sinx=1, cosx=0. 3) Покажем, что других корней быть не может. Найдем производную функции Так как x - в первом квадранте, то sinx постоянно возрастает, cosx постоянно убывает, значит "первая часть" в производной постоянно убывает от +∞ (справа при стремлении к 0) до 0 (в π/2), а "вторая часть" постоянно возрастает от 0 (в 0) до +∞ при стремлении к π/2. Это значит, что производная положительна до некого x_max на [0;x_max) и отрицательна на (x_max;π/2], принимая одно нулевое значение в x_max на отрезке [0;π/2] Так как на концах отрезка [0;π/2] рассматриваемая функция принимает значения, равные 1, во всех остальных точках отрезка [0;π/2] она принимает значения строго больше 1. Следовательно, других корней исходного уравнения нет.
1. D=R
2. y'=(7+12x-x³)'=12-3x²
3. y'=0, 12-3x²=0|:3, 4-x²=0. x₁=-2, x₂=2
4. y' - + -
(-2)(2)>x
y убыв min возр max убыв
5. x min=-2, y(-2)=7+12*(-2)-(-2)³=-9
(-2;-9) точка минимума