1) проверяем условие при наименьшем возможном значении n.
n>5, значит проверяем условие при n=6
Верно!
2) Сделаем предположение, что для всех n=k, k>5 верно неравенство:
3) Тогда при n=k+1 должно выполняться неравенство:
Вернемся к неравенству из второго пункта и домножим его на 2:
Подставим 2k² в 3-й пункт и рассмотрим полученное неравенство:
по методу интервалов определяем, что неравенство k²-2k-1>0 выполняется при k>1+√2, тогда при k>5 оно тоже выполняется (так как 5>1+√2)
Тогда обратным ходом получаем 2k²>k²+2k+1 при k>5 или 2k²>(k+1)² при k>5
Если , а
, при k>5
То есть, , при k>5, то по закону транзитивности:
, при k>5 - ч.т.д
{2x−3y=0
{2х+5у=7 /х3
{2х-3у=0 /х5
{6х+15у=21
{10х-15у=0
16х=21
х=21/16
2*21/16-3у=0
21/8-3у=0
-3у=-21/8
у=7/8
ОТВЕТ:
х=21/16
у=7/8