(x-1)(x+5)>0 Находим точки, в которых неравенство равно нулю: x-1=0 x=1 x+5=0 x=-5 Наносим на прямую (-∞;+∞) эти точки: -∞-51+∞ Получаем три диапазона: (-∞;-5) (-5;1) (1;+∞) Для того, чтобы определить знак диапазона достаточно подставить хотя бы одно число из этого диапазона: (-∞;-5) Например, подставим число -7: (-7-1)(-7+5)=-8*(-2)=16>0 ⇒ + (-5;1) Подставим число этого диапазона 0: (0-1)(0+5)=-1*5=-5<0 ⇒ - (1;+∞) Подставим 2: (2-1)(2+5)=1*7=7>0 ⇒ + -∞+-5-1++∞ ⇒ x∈(-∞;-5)U(1;+∞).
Пусть AB=[0;170]. Тогда можно считать, что точки Фокса - все целые точки на этом отрезке, а k-ая точка Форда имеет координаты 170k/113, где k=0,1,2,...,112. Точку Форда можно записать в виде q+r/113, где q - частное, а r - остаток от деления 170k на 113. Т.к. расстояние между соседними точками Форда равно 170/113, что больше 1, то ближайшими к точкам Форда будут точки Фокса, и значит расстояние от k-ой точки Форда до соседней слева равно r/113, а до соседней справа (113-r)/113. Значит максимальное количество различных расстояний не больше, чем остатков от деления на 113, т.е. не более 113 штук.
Т.к. НОД(170,113)=1, то, когда k пробегает все числа от 0 до 112, остаток r от деления 170k на 113 пробегает те же числа, но в другом порядке, а значит все 113 возможных расстояний будут достигаться на каких-то соседних точках. ответ: 113.
X+3x>6-2
4x › 4 / :4
x › 1
Как-то так. Если тебе дано число › 1,то оно является решением,а если число ‹ 1, то решением оно не является.