ответ:: S6 = 10,2
Объяснение:
1. Для определения суммы шести членов арифметической прогрессии необходимо узнать значение шестого ее члена и только тогда найти S6 по формуле
Sn = (a1 + an) : 2 * n.
2. Известна формула для энного члена арифметической прогрессии
аn = a1 + d *(n - 1).
3. Пользуясь этой формулой вычислим разность прогрессии d.
a4 = a1 + d * 3;
1,8 = 1,2 + 3 d;
d = (1,8 - 1,2) : 3 = 0,6 : 3 = 0,2.
4. Теперь найдем а6.
а6 = а1 + d * 5 = 1,2 + 0,2 * 5 = 1,2 + 1 = 2,2.
5. Отвечаем на во задачи
S6 = (a1 + a6) : 2 * 6 = (1,2 + 2,2) : 2 * 6 = 10,2.
1 .
г) (2a -3b²)(4a² +6ab² +9b⁴ ) = (2a)³ - (3b²)³ =8a³ -27b⁶.
- - - - - -
2.
а) 9x² - 25 =(3x)² -(5)² =(3x -5)(3x +5) ;
б) -4a² +8a -4 = -4( a² -2a*1 +1²) = - 4(a-1)² || = -(2(a-1) )² ||
в) 8y³ -8x³ = 8(x³ - y³) =8(x - y) (x² + xy + y²) ;
г) 9(a+2)²- 4 =( 3(a+2) ²) - 2² =( 3(a+2) - 2 )( 3(a+2) +2)=(3a+4)(3a+8) ;
|| =9a² +36a +32 ||
или 9(a+2)²- 4 =9(a² +4a +4) -4 = 9a² +36a +32
д) (a - 1)³ + 8a⁶ = (a - 1)³ + (2a²)³ = (a -1 +2a²)*( (a-1)² - (a-1)*2a² + (2a²)²) =
( 2a² + a - 1)*( 4a⁴ - 2a³ + 3a² - 2a + 1 ) .
е) (а - b)²+ 2(a-b)(a+3) + (a+3)² = (a -b +a+3)² = (2a -b +3)² .
- - - - - - -
3. Решите уравнение (4x+1)² - (4x+3)(4x-3) = 6x -2
(4x)²+2*4x*1 +1² - ( (4x)²- 3² ) = 6x -2
(4x)² +8x + 1 - (4x)² + 9 = 6x -2
8x - 6x = -2 -1 - 9
2x = -12
x = - 6
- - - - - - -
4 . 4x² - 4xy + y² =(2x)² -2*(2x)y + y² = (2x+y)² ≥0
АВ =28, CD = 35, ВС = 7, DM - биссектриса ∠ADC проходящая через середину АВ.
Найти: S - ?
Решение.
Проведем через точку М линию MN ║ AD, т.к. АМ=МВ по условию задачи, то MN - средняя линия.
DM - биссектриса, то ∠ADM = ∠MDC, а ∠NMD = ∠ADM как накрест лежащие при параллельных прямых (MN ║ AD), отсюда следует, что ∠NMD = ∠NDM следовательно ΔMND - равнобедренный. (смотри рисунок ниже)
Тогда
MN = ND = CD / 2 = 35 /2 = 17,5
С другой стороны средняя линия в трапеции равна
Проведем в прямоугольном треугольнике ΔMND прямую NO - высоту и продлим эту прямую до точки К лежащей на прямой AD.
ΔNOD = ΔKOD по стороне (OD) и двум углам и двум прилежащим к ней углам, следовательно MNDK ромб, у котрого
MK = MN = ND = KD = 17,5
тогда
AK = AD - KD = 28 - 17,5 = 10,5
Если в ΔAMK MK² = AM² + AK² , то ΔAMK - прямоуольный
17,5² = 14² + 10,5²
306,25 = 306,25 следовательно ∠MAK = 90° , а трапеция ABCD прямоугольная
Тогда
Высота равна h = AB = 28
Найдем площадь трапеции
кв.ед.
ответ: S = 490 кв.ед.