2a^2 - 3b) * (a^2 + 2ab + 5b^2) = 2a^4 + 4a^3 * b + 10a^2 * b^2 - 3a^2 * b - 6ab^2 - 15b^3;
2) (x^2 - 2xy) * (x^2 - 5xy + 3y^2) = x^4 - 5x^3 * y + 3x^2 * y^2 - 2x^3 * y + 10x^2 * y^2 - 6xy^3 = x^4 - 7x^3 * y + 13x^2 * y^2 - 6xy^3;
3) (x - y) * (x^3 + x^2 * y + x * y^2 + y^3) = x^4 + x^3 * y + x^2 * y^2 + xy^3 - x^3 * y - x^2 * y^2 - xy^3 - y^4 = x^4 - y^4;
4) (a + b) * (a^3 - a^2 * b + a * b^2 - b^3) = a^4 - a^3 * b + a^2 * b^2 - ab^3 + a^3 * b - a^2 * b^2 + ab^3 - b^4 = a^4 - b^4;
5) (5a - 4b) * (a^3 + 2a^2 * b - 5a * b^2 - 3b^3) = 5a^4 + 10a^3 * b - 25a^2 * b^2 - 15ab^3 - 4a^3 * b - 8a^2 * b^2 + 20ab^3 + 12b^4 = 5a^4 + 6a^3 * b - 33a^2 * b^2 + 5ab^3 + 12b^4;
6) (2x + 3y) * (x^3 + 3x^2 * y - 3x * y^2 + 4y^3) = 2x^4 + 6x^3 * y - 6x^2 * y^2 + 8xy^3 + 3x^3 * y + 9x^2 * y^2 - 9xy^3 + 12y^4 = 2x^4 + 9x^3 * y + 3x^2 * y^2 - xy^3 + 12y^4.
Объяснение:
если модешь сделай лутшим ответом
Над всеми векторами черта. Надо найти координаты векторов А₁А₂; А₁А₃; А₁А₄. для чего от координат конца вектора отнимаем координаты начала.
А₁А₂=(-2;7;-6); А₁А₃(-6;1;-3); А₁А₄(-13;0;-3), затем находим определитель третьего порядка
-2 7 -6
-6 1 -3
-13 0 -3, у меня нет тут вертикальных черточек для него , определитель равен
40 0 15
-6 1 -3
-13 0 -3
=1*(-1)²⁺²*(-120+195)=75, далее берем модуль 75, и делим его на шесть. это есть объем тетраэдра и он равен 75/6=12.5/ед. куб./
Чтобы найти высоту, опущенную на грань А₁А₂А₃, надо найти площадь грани А₁А₂А₃ , т.е. половину модуля векторного произведения векторов А₁А₂ и А₁А₃
Векторное произведение находим как определитель
i j k
-2 7 -6
-6 1 -3, он равен
i *(-21+6) -j *(6-36)+ k*(-2+42)= -15i +30j +40 k
определитель находил путем его разложения по элементам первой строки, зная координаты вектора (-15;30;40), можем найти половину модуля этого произведения, что и будет площадью грани А₁А₂А₃ , т.е.
0.5*√(225+900+1600)=0.5*√2725=2.5√109≈26.1
Зная площадь s грани А₁А₂А₃ и объем тетраэдра v можно теперь найти высоту h, опущенную на эту грань из вершины А₄, она равна h=3v/s=
3*12.5/(2.5√109)=15√109/109≈1.44