По условию задачи, дана геометрическая прогрессия bn, первые три члена которой равняются:
b1 = 5;
b2 = -10;
b3 = 20.
Найдем знаменатель q данной геометрической прогрессии. Для этого воспользуемся соотношением b2 = b1*q. Подставляя в данное соотношение значения b1 и b2 из условия задачи, получаем уравнение:
5*q = -10.
Находим q из этого уравнения:
q = -10/5;
q = -2.
Для того, чтобы убедиться, действительно ли данная последовательность является геометрической прогрессией, проверяем выполняется ли соотношение b3 = b2*q. Поскольку 20 = (-10)*(-2), то данная последовательность является геометрической прогрессией.
Находим b4:
b4 = b3*q = 20*(-2) = -40.
Находим b5:
b5 = b5*q = (-40)*(-2) = 80.
Находим теперь сумму первых пяти членов данной прогрессии:
b1 + b2 + b3 + b4 + b5 = 5 - 10 + 20 - 40 + 80 = 55.
ответ: сумма первых пяти членов данной прогрессии равна 55.
а) Сумма равна 1, это одна возможная комбинация: {0} {1}, поэтому:
б) Сумма равная 2, это ({0};{2}), можно было бы составить другой комбинацией, но у нас нет двух карточек с единицами, поэтому вероятность так же равна:
в) Сумма равна 3, это ({0};{3}) или ({1};{2})
Вероятность равна:
г) Сумма равна 6, это ({0};{6}) ({1};{5}) ({2};{4})
Вероятность равна:
д) Сумма равна 9, это: ({0};{9}) ({1};{8}) ({2};{7}) ({3};{6}) ({4};{5})
Вероятность равна:
Таким образом, можно заметить, что вероятность зависит только от кол-ва составлений данного числа другими числами с карточек.