Складываем уравнения:
x^2 + xy + y + y^2 + xy + x = 1 + 5
(x^2 + 2xy + y^2) + (x + y) - 6 = 0
(x + y)^2 + (x + y) - 6 = 0
Получаем квадратное уравнение относительно t = x + y:
t^2 + t - 6 = 0
По теореме Виета сумма корней равна -1, произведение -6. Угадываем корни: t = -3 или t = 2.
1) t = -3
x + y = -3 [*]
Рассматриваем первое уравнение:
x^2 + xy + y = 1
x(x + y) + y = 1
-3x + y = 1
Вычитаем из уравнения [*] получившееся уравнение.
x + y + 3x - y = -3 - 1
4x = -4
x = -1
y = -3 - x = -3 + 1 = -2.
2) Аналогично с t = 2.
x + y = 2
2x + y = 1
x = -1
y = 3
ответ. (-1, -2), (-1, 3).
1) Номер не может начинаться с 0.
Значит, на 1 месте любая из 6 цифр, кроме 0 (6 вариантов).
На 2 месте любая из 6 оставшихся, в том числе и 0 (6 вариантов).
На 3 месте любая из 5, потом любая из 4, и, наконец, любая из 3.
Всего 6*6*5*4*3 = 2160 вариантов.
2) На 1 и последнем местах цифры 1 и 9.
Либо 1 _ _ _ 9, либо 9 _ _ _ 1.
В каждом случае 5*4*3 = 60 вариантов. Всего 120 вариантов.
3) Цифры 5 и 7 стоят рядом, и они есть обязательно. Варианты:
57 _ _ _; _ 57 _ _; _ _ 57 _; _ _ _ 57; 75 _ _ _; _ 75 _ _; _ _ 75 _; _ _ _ 75.
Всего 8*5*4*3 = 40*12 = 480 вариантов.
8. Сочетания.
Водители:
C(2,8) = 8*7/2 = 56/2 = 28.
Но у нас чётко обозначено: один рулевой, второй штурман.
Поэтому умножаем на 2 и получаем 56.
Механики:
C(3, 12) = 12*11*10/(1*2*3) = 2*11*10 = 220.
Всего команд 56*220 = 12320
9. Тоже сочетания
С(5, 18) = 18*17*16*15*14/(1*2*3*4*5) = 3*17*4*3*14 = 51*12*14 = 8568 вариантов.